УДК 621.397

НОВЫЙ ПОДХОД К ИСПОЛЬЗОВАНИЮ ВЕЙВЛЕТ-ФИЛЬТРОВ ПРИ ОБРАБОТКЕ ИЗОБРАЖЕНИЙ

Дворкович В.П., Гильманшин А.В.

Введение

Обработка изображения при помощи одномерного вейвлет-преобразования основана на последовательном разложении изображения по столбцам и строкам. Такой вид обработки соответствует использованию разделимых двумерных фильтров, импульсная характеристика которых есть тензорное произведение импульсных характеристик соответствующих одномерных фильтров.

Стандартное вейвлет-преобразование подразумевает использование двухмерных вейвлет-фильтров, при этом обычно сначала вейвлет-преобразование применяется ко всем строкам изображения, в результате чего формируется 2 области (левая – низкочастотная и правая – высокочастотная). Затем вейвлетпреобразование применяется ко всем столбцам полученных коэффициентов, в результате получается уже 4 области (НН – низкочастотная область, левый верхний угол, и три высокочастотных области; НВ – нижний левый угол, ВН – верхний правый угол, ВВ – нижний правый угол). Ниже рассматривается применение двух- и трехполосных вейвлет-фильтров для решения задачи кодирования изображений.

Применение двухполосных вейвлет-фильтров

Если необходимо, данная процедура может быть снова применена к НН компоненте изображения, в результате чего вместо нее будет сформировано еще 4 Приводятся результаты применения для кодирования изображений двухполосных и трехполосных вейвлетпреобразований. Рассмотрены возможности разложения изображений на 6, 9, 11, 13 и 16 частотных компонент, а также достижимый выигрыш в изменении объема информации при использовании соответствующих разложений.

частотных компоненты. Для повышения эффективности преобразования изображений предлагается дополнительное вейвлет-преобразование, применяемое к НВ и ВН компонентам изображения. В результате все изображение раскладывается на 6 частотных компонент: 1 низкочастотную и 5 высокочастотных. Схема разложения изображения представлена на рис. 1.

Для исследования энергетических характеристик вейвлет-преобразования от вида вейвлет-базиса было выбрано 4 тестовых монохромных изображения с разрешением 512х512 пикселов. Отличительные особенности этих изображений приведены в таблице 1.

Для исследования характеристик вейвлетпреобразования использовался набор различных вейвлет-фильтров с разным количеством отсчетов в импульсных характеристиках (ИХ) низкочастотных и высокочастотных фильтров. При этом стоит отметить, что с ростом числа отсчетов в ИХ уменьшается площадь под АЧХ ВЧ фильтра и наблюдается уменьшение энергии в ВЧ компонентах.

Рис. 1. Схема вейвлет-преобразования, с дополнительным разложением НВЧ и ВНЧ компонент.

Таблица 1

Отличительные особенности тестовых изображений

Название изображения	Особенности изображений
Lanna	Классическое тестовое изображение. Плавные цветовые переходы, на-
Lenna	клонные границы.
Darbara	Черно-белое изображение. Полоски на скатерти, платке и брюках, здесь
Barbara	часто возникает муар и другие артефакты
Caldbill	Черно-белое изображение, содержащее множество мелких деталей, как
Goldhill	на переднем, так и на заднем плане
Liecheur	Классическое тестовое изображение. Содержащее большое число верти-
Harbour	кально ориентированных элементов

С другой стороны, по мере увеличения числа отсчетов в ИХ требуется увеличение мощности вычислительных процедур на выполнение операции дискретного вейвлетпреобразования, поэтому в реальных системах сжатия изображений при помощи вейвлет- преобразования необходим компромисс между размером вейвлет-базиса и требуемым объемом вычислений.

В данной работе использовались фильтры, частотные характеристики которых определяются соотношениями:

для НЧ фильтра
$$H(x) = h_0 + 2\sum_{n=1}^{4} h_n \cos(\pi n x)$$
, (1)

для ВЧ фильтра
$$G(x) = g_0 + 2\sum_{n=1}^{5} g_n \cos(\pi n x)$$
. (2)

Восстановление изображений производится с применением следующих фильтров:

Для HЧ-составляющих
$$\overline{H}(x) = g_0 + 2\sum_{n=1}^{5} (-1)^n g_n \cos(\pi n x)$$
, (3)

Для ВЧ-составляющих $\bar{G}(x) = h_0 + 2\sum_{n=1}^{4} (-1)^n h_n \cos(\pi n x)$. (4)

В соотношениях (1) и (2) $0 \leq x \leq 1$, $x = \frac{2f}{f_{_{\mathcal{I}}}}$, $f_{_{\mathcal{I}}}$ –

частота дискретизации. Коэффициенты \boldsymbol{h}_{n} и \boldsymbol{g}_{n} приведены в таблице 2.

На рис. 2 изображены соответствующие АЧХ вейвлет-фильтров.

Рис 2. АЧХ двухполосных вейвлет-фильтров.

В качестве примера на следующем рисунке даны результаты разложения тестового изображения "Lenna" на 4 и 6 компонент.

Из этого рисунка видно, что разбиение на 6 компонент позволяет сконцентрировать энергию в НЧ компонентах, что обеспечивает квантование ВЧ компонент с меньшим количеством уровней.

Основной особенностью описанного выше вейвлет-преобразования является, то, что в общем случае, в сигнале выделяется лишь две компоненты – низкочастотная и высокочастотная составляющие.

Таблица 2

Коэффициенты двухполосного вейвлет-фильтра.

Ν	0	1	2	3	4	5
h _n	$\frac{306}{256}$	$\frac{75}{256}$	$-\frac{65}{256}$	$\frac{15}{256}$	$\frac{3}{256}$	
g _n	$\frac{168}{256}$	$-\frac{103}{256}$	$\frac{8}{256}$	$\frac{12}{256}$	$\frac{2}{256}$	$-\frac{1}{256}$

Рис. 3. Распределение вейвлет-коэффициентов по изображению Lenna, разбиение на 4 и 6 компонент соответственно. Величина НЧ-коэффициентов уменьшена в 2 раза, величина ВЧ-коэффициентов, расположенных на уровне серого, увеличена в 4 раза.

Применение трехполосных вейвлет-фильтров

Для повышения эффективности преобразования изображений предлагается производить разделение сигналов при помощи трехполосных фильтров, которые делят сигнал на три составляющих (низкочастотную, среднечастотную и высокочастотную).

При этом вейвлет преобразование выполняется по стандартной схеме: сначала преобразованию подвергаются все строки изображения, в результате чего формируются 3 области (низкочастотная, среднечастотная и высокочастотная). Затем вейвлет преобразование применяется ко всем столбцам полученных коэффициентов, в результате можно выделить уже 9 областей. Для повышения эффективности преобразования изображений предлагается дополнительное двухполосное вейвлетпреобразование, применяемое к низкочастотным и среднечастотным компонентам изображения, при этом в зависимости от глубины преобразования возможно разложение на 11, 13 или 16 компонент.

Структурная схема вейвлет-разложения изображения и обозначение полученных областей (при разложении на 16 компонент) представлены на рис. 4. Для вейвлет-преобразования по вышеуказанной схеме может использоваться большой набор банков вейвлет-фильтров с разным количеством отсчетов в импульсных характеристиках (ИХ) низкочастотных, среднечастотных и высокочастотных фильтров.

Частотные характеристики фильтров, используемых в данной работе, определяются следующими соотношениями:

для НЧ фильтра
$$H(x) = h_0 + 2\sum_{n=1}^{4} h_n \cos(\pi n x)$$
, (5)

для СЧ фильтра
$$B(x) = 2j \sum_{n=1}^{4} b_n \sin(\pi n x)$$
, (6)

для ВЧ фильтра
$$G(x) = g_0 + 2\sum_{n=1}^{5} g_n \cos(\pi n x)$$
. (7)

В соотношениях (5), (6) и (7) $0 \le x \le 1$, $x = \frac{2f}{f_{_{\mathcal{A}}}}$, $f_{_{\mathcal{A}}}$ – частота дискретизации. Коэффициенты $h_{_n}$, $b_{_n}$ и $g_{_n}$ – прямого преобразования приведены в таблице 2.

На рис. 5 приведены соответствующие АЧХ вейвлетфильтров.

В таблице 3 даны коэффициенты обратного преобразования $\overline{h}_{\rm n}$, $\overline{b}_{\rm n}$ и $\overline{g}_{\rm n}$.

200

150

Рис. 4. Структурная схема трехполосного вейвлет-преобразования изображения.

Puc. 5. АЧХ трехполосных вейвлет фильтров.

Таблица 2

Ν	0	1	2	3	4	5	6
h _n	$\frac{295}{256}$	$\frac{107}{256}$	$-\frac{38}{256}$	$\frac{3}{256}$	$\frac{1}{256}$		
b _n	0	$\frac{200}{256}$	$-\frac{88}{256}$	$-\frac{10}{256}$	$-\frac{18}{256}$	$\frac{7}{256}$	$\frac{4}{256}$
g _n	$\frac{149}{256}$	$-\frac{114}{256}$	$\frac{45}{256}$	0	$-\frac{8}{256}$	$\frac{3}{256}$	

Коэффициенты прямого преобразования.

Коэффициенты обратного преобразования.

-							1	1	1
N	0	1	2	3	4	5	6	7	8
\overline{h}_n	$\frac{149}{256}$	$\frac{118}{256}$	$\frac{51}{256}$	$-\frac{1}{256}$	$-\frac{16}{256}$	$-\frac{8}{256}$	0	$\frac{1}{256}$	$\frac{1}{256}$
$\overline{\mathbf{b}}_{\mathbf{n}}$	0	$-\frac{194}{256}$	$-\frac{73}{256}$	$\frac{4}{256}$	$-\frac{11}{256}$	$-\frac{4}{256}$			
\overline{g}_n	$\frac{143}{256}$	$-\frac{230}{256}$	$-\frac{91}{256}$	$-\frac{2}{256}$	$\frac{14}{256}$	$\frac{4}{256}$	0	$\frac{2}{256}$	$\frac{1}{256}$

Таблица 3

На рис. 6-9 в качестве примера приведены результаты разложения тестового изображения "Harbour" на 9, 11, 13 и 16 компонент соответственно.

Рис. 6. Распределение вейвлет-коэффициентов по изображению Harbour, разбиение на 9 компонент. Величина НЧ-коэффициентов уменьшена в 3 раза, величина ВЧ-коэффициентов, расположенных на уровне серого, увеличена в 5 раза.

Рис. 7. Распределение вейвлет-коэффициентов по изображению Harbour, разбиение на 11 компонент. Величина НЧ-коэффициентов уменьшена в 3 раза, величина ВЧ-коэффициентов, расположенных на уровне серого, увеличена в 5 раза.

Из приведенных рисунков видно, что разбиение на большее число компонент позволяет сконцентрировать энергию в НЧ и СЧ компонентах, что обеспечивает квантование ВЧ компонент со значительно меньшим количеством уровней.

Рис. 8. Распределение вейвлет коэффициентов по изображению Harbour, разбиение на 13 компонент. Величина НЧ-коэффициентов уменьшена в 3 раза, величина ВЧ-коэффициентов, расположенных на уровне серого, увеличена в 5 раза.

Рис. 9. Распределение вейвлет-коэффициентов по изображению Harbour, разбиение на 16 компонент. Величина НЧ-коэффициентов уменьшена в 3 раза, величина ВЧ-коэффициентов, расположенных на уровне серого, увеличена в 5 раза.

После вейвлет-преобразования в каждой из высокочастотных компонент изображения содержится различное количество энергии. Поэтому к каждой из компонент изображения возможно применение своей маски квантования, не значительно ухудшающей качество изображения. Соответственно для описания случайной величины – яркости пикселей в каждой из ВЧ-компонент вейвлетпреобразования можно использовать одномерную плотность распределения вероятностей, с достаточной степенью точности подчиняются закону Лапласа:

$$w(x) = \frac{\lambda}{2} e^{-\lambda |x|}.$$
(8)

Величину λ можно найти, зная СКО данного распределения, т.к. по определению для непрерывного случайного процесса с нулевым математическим ожиданием:

$$CKO \cong \sqrt{\frac{1}{MN} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} x_{nm}^2} .$$
(9)

Откуда, используя формулы (8) и (9), не трудно показать, что:

$$\lambda = \frac{\sqrt{2}}{\text{CKO}}.$$
(10)

Выбор количества уровней квантования проводился экспериментальным путем на основе:

 приемлемого визуального ухудшения качества изображения при переходе к меньшему числу уровней квантования;

 – уменьшению величин сигнал-шум (SNR) и пиковый сигнал-шум (PSNR) не более чем на 0.8дБ для каждой ВЧ компоненты при общем уменьшении SNR и PSNR от переквантования всех компонент не более чем на 3дБ. При этом стоит отметить, что число уровней квантования выбиралось из ряда 0, 3, 7, 15, 31, 63. В этом случае каждому уровню можно сопоставить конечное число бит.

В результате исследования большого числа различных изображений была сформирована приведенная в таблице 4 маска выбора числа уровней квантования в зависимости от параметра λ .

Последнее значение λ свойственно в основном текстурам (искусственным изображениям) и по этому редко встречается при воспроизведении телевизионных изображений.

Стоит отметить и другие возможности определения параметра λ , например, имеет смысл для оценки распределения воспользоваться параметром модульной медианы N:

$$mod \cong \frac{1}{MN} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} |x_{nm}|.$$
(11)

В этом случае с помощью формул (5) и (8) не трудно показать что:

$$\lambda = \frac{1}{\text{mod}}.$$
 (12).

Преимущество такого способа определения параметра λ – меньшие вычислительные затраты.

В таблице 5 приведены средние значения параметра λ для компонент по четырем тестовым изображениям при разложении на 4 и 6 компонент.

Таблица 4

Определение числа уровней квантования.

Параметр λ	λ>1	$1 > \lambda > 0.4$	$0.4 > \lambda > 0.15$	$0.15 > \lambda > 0.05$	$0.05 > \lambda > 0.02$	$0.02 > \lambda$
Число уровней	0	3	7	15	31	63

Таблица 5

Средние значения параметра λ по компонентам.

Количество компонент	Среднее значение λ для всех компонент					
	Н	В	В	BB		
4	0,	13	0,	0,42		
6	HBH	HBB	BHH	BHB	0.42	
8	0,09	0,20	0,10	0,22	0,42	

В следующей таблице приведены средние значения параметра λ для компонент по четырем тестовым изображениям при разложении на 9, 11, 13 и 16 компонент соответственно.

Таблица 6.

Средние значения параметра λ по компонентам.

Кол-во областей	Среднее значение λ для всех компонент																						
	F	IC	С	Н	H	HB		BH		CC			CB	BC	BB								
9	0,	09	0,0	08	0,	15	0,	13		0,	18		0,36	0,32	0,7								
11	HCH	НСВ	HCH	НСВ	0,15		0,15		0,15		0,	13		0,	18		0,36	0,32	0,7				
	0,06	0,16	0,05	0,15	, -				-									-					
10	0.06	0.16	0.05	0.15	НВН	HBB	BHH	BHB		0	10		0.26	0.22	0.7								
15	0,06 0,16 0,05 0,15		0,15	0,13	0,25	0,12	0,24		0,	10		0,30	0,32	0,7									
16	0.06	0.16	0.05	0 15	0.13	0.25	0.12	0.24	HH	BH	HB	BB	0.36	0.32	0.7								
10	0,06	0,00	0,10	0,05	0,15	0,13	0,25	0,12	0,24	0,14	0,35	0,33	0,62	0,30	0,32	0,7							

Таблица 7

Название	Уменьшение объема информации в зависимости от количества компонент в разбиении.								
изображения	4	6	9	11	13	16			
Lenna	1,68	2,05	2,32	2,51	2,61	2,84			
Barbara	1,60	1,94	2,16	2,34	2,46	2,63			
Goldhill	1,68	2,05	2,16	2,29	2,42	2,67			
Harbour	1,60	1,94	2,32	2,49	2,58	2,81			

Уменьшение объема информации.

В таблице 7 приведены результаты по уменьшению объема информации, содержащейся в выходном потоке при применении разбиения на 4, 6 9, 11, 13 и 15 компонент, соответственно, при условии $PSNR \simeq 37 \mu S$.

При этом под уменьшением информации понимается отношение количества бит, требуемое для передачи исходных тестовых монохромных изображений, к количеству бит после вейвлет-преобразования и последующего квантования высокочастотных областей по методике, указанной выше.

Заключение

Разложение изображения на большое количество компонент приводит к некоторому увеличению числа выполняемых операций в кодирующем устройстве по сравнению со стандартным вейвлет-разложением на 4 компоненты, число же операций, выполняемых декодером, в силу малого числа ненулевых отсчетов в СЧ и ВЧ компонентах, возрастает незначительно.

При стандартном вейвлет-разложении изображений на 4 компоненты и последующем квантовании высокочастотных областей объем информации в среднем может быть уменьшен в 1.64 раза. Дополнительная обработка двух ВЧобластей этих вейвлет-преобразований позволяет дополнительно уменьшить объем информации на 25%.

При вейвлет-разложении изображений на 9, 11, 13 и 16 областей объем информации в среднем уменьшается по сравнению с разложением на 4 компоненты на 35%, 45%, 50% и 60% соответственно.

Литература

- S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. And Machine Intel. 1989. vol.11, no 7,pp. 674-693
- 2. Дворкович В.П., Дворкович А.В. Расчет банков фильтров дискретного вейвлет-преобразования и анализ их характеристик // Цифровая обработка сигналов, 2006, №2
- Дворкович В.П., Гильманшин А.В. Новый подход к использованию двумерных вейвлет-фильтров при обработке изображений // Доклад на 10-й Международной конференции «Цифровая обработка сигналов и ее применение», Москва, март 2008.
- Дворкович В.П., Гильманшин А.В. Использование трехполосных фильтров вейвлет-фильтров для обработки изображений // Доклад на 10-й Международной конференции «Цифровая обработка сигналов и ее применение», Москва, март 2008.

Уважаемые коллеги!

Со второго полугодия 2008 года вы можете подписаться на наш журнал в любом отделении связи. Подписной индекс издания по каталогу ОАО «Роспечать» - 82185.

Для тех, кто не успел оформить подписку на первое полугодие 2008 года через ОАО «Роспечать», сохраняется возможность приобретения журналов непосредственно в редакции по адресу: 107031, г. Москва, Рождественка, 6\9\20, стр. 1, Российское научно-техническое общество радиотехники, электроники и связи им. А.С. Попова, или оформить Заказ в соответствии с требованиями, выставленными на сайте журнала: www.dspa.ru.

Справки по телефонам: (495) 621-71-08, 621-06-10.

Факс: (495) 621-16-39.

E-mail: nto.popov@mtu-net.ru

tor@rgrta.ryazan.ru