ФОРМИРОВАНИЕ ТРЕХМЕРНОГО ИЗОБРАЖЕНИЯ ПО ДАННЫМ БОРТОВОЙ РЛС МАЛОВЫСОТНОГО ПОЛЕТА

Клочко В.К., Мойбенко В.И.

Введение

Проблема формирования трехмерного радиолокационного изображения (РЛИ) поверхности и объектов на поверхности на базе моноимпульсной бортовой РЛС миллиметрового диапазона возникает при маловысотных полетах летательных аппаратов. Общие подходы к ее решению в режиме синтезирования апертуры на основе узкополосной доплеровской фильтрации рассматривались в литературе [1, 2] и сводились к расчету координат трехмерных пространственно-протяженных доплеровских элементов разрешения (ДЭР), рассекающих диаграмму направленности антенны (ДНА) на более мелкие части. К частным случаям общего подхода можно отнести алгоритмы измерения высоты объектов на поверхности при обходе препятствий по линии полета. Недостатком подхода [1, 2] является ограниченная разрешающая способность по угловым координатам, зависящая от того, как вектор скорости носителя РЛС расположен относительно направляющего вектора антенны. Вместе с тем известны моноимпульсные методы измерения угловых координат точечных объектов, находящихся в пределах ДНА, например, [3]. Целесообразно использовать эти методы для измерения угловых координат элементов поверхности, находящихся в пределах ДЭР. Такой подход эквивалентен рассечению ДЭР на более мелкие части и приводит к повышению разрешающей способности РЛС по угловым координатам.

Цель работы – разработка метода формирования трехмерного РЛИ с повышенным разрешением по угловым координатам в режиме маловысотного полета при совместном использовании методов узкополосной доплеровской фильтрации и моноимпульсного измерения угловых координат.

Уравнение линии доплеровского элемента разрешения

В основе предлагаемого метода лежит уравнение линии ДЭР [1], которое получается следующим образом. Известно, что доплеровской частоте f можно поставить в соответствие угол α отклонения луча отраженного сигнала от вектора \vec{v} путевой скорости движения носителя РЛС, причем частота f связана с углом α зависимостью [4]:

$$f = \frac{2\nu}{\lambda} \cos \alpha, \tag{1}$$

где *v* – путевая скорость; λ – длина волны РЛС.

Коническая поверхность постоянного угла α (частоты f), имеющая общий центр со сферической поверхностью

Предложен метод формирования трехмерного изображения поверхности с повышенным разрешением по угловым координатам в режиме маловысотного полета при совместном использовании методов формирования пространственно-протяженных доплеровских элементов разрешения и моноимпульсного измерения угловых координат.

ДНА, пересекает поверхность ДНА по линии окружности (линии ДЭР). Центр данной окружности лежит на оси прямого кругового конуса постоянного значения угла *а*. По этой же оси направлен вектор \vec{v} путевой скорости. В самолетной системе координат положительная полуось ОХ совмещается с вектором скорости \vec{v} . Тогда линия окружности (линия ДЭР) без искажения проецируется по плоскость YOZ. Уравнение окружности с центром в начале координат и радиусом *r* в плоскости YOZ:

$$v^2 + z^2 = r^2.$$
 (2)

Связь прямоугольных y, z и сферических R, φ, θ координат произвольной точки, лежащей на окружности, устанавливается обычным образом:

$$y = R\sin\varphi\cos\theta, \quad z = R\sin\theta, \quad r = R\sin\alpha,$$
 (3)

где heta отсчитывается от горизонтальной плоскости ХОҮ.

После подстановки (3) в (2) получается уравнение
линии ДЭР:
$$\sin^2 \varphi \cos^2 \theta + \sin^2 \theta = \sin^2 \alpha \iff$$

 $(1 - \cos^2 \varphi) \cos^2 \theta + \sin^2 \theta = \sin^2 \alpha \iff$
 $\Leftrightarrow \cos^2 \varphi \cos^2 \theta = \cos^2 \alpha \implies$
 $\cos \varphi \cos \theta = \cos \alpha$, (4)

где φ , θ и α – острые углы.

Уравнение (4) линии ДЭР связывает угловые координаты азимута φ и угла места θ точки в пространстве, принадлежащей линии ДЭР, с косинусом угла α , зависящим от доплеровской частоты f в соответствии с (1). В дальнейшем (4) используется при формировании трехмерного РЛИ.

Метод формирования трехмерного РЛИ

Метод излагается в виде следующего алгоритма.

1. При данном положении ДНА отраженный сигнал $\dot{S}(t)$ селектируется в *i*-х элементах разрешения по дальности: $\dot{S}_i(t)$, $i = \overline{1, m}$.

2. В каждом *i*-м элементе дальности сигнал $\dot{S}_i(t)$ селектируется по доплеровской частоте f_j в *j*-х узкополосных фильтрах: $\dot{S}_{ii}(t), j = \overline{1, n}$.

3. Последовательность *j*-х элементов разрешения по частоте ставится в соответствие последовательности *j*-х элементов разрешения по углу α_j и на основе (1) вычисляется косинус этого угла $\cos \alpha_j$.

4. Измеряется амплитуда A(i,j) сигнала $S_{ij}(t)$, выделенного в i-м элементе дальности и j-м фильтре доплеровских частот.

5. Если A(i,j) превышает порог обнаружения (соответствует отражению от элемента поверхности), то на основе сигнала $S_{ij}(t)$ моноимпульсным методом измеряется угловая координата (азимут φ или угол места θ в самолетной системе координат) каждого точечного отражателя, находящегося в i,j-м ДЭР, а вторая координата для известного косинуса угла α_j вычисляется на основе уравнения (4) линии ДЭР по формуле

$$\theta = \arccos(\cos \alpha_j / \cos \varphi)$$
 или
 $\varphi = \arccos(\cos \alpha_j / \cos \theta),$
 $\theta \in [0,90^0], \alpha \in [0^0,90^0], \varphi \in (-90^0,90^0),$

где φ отсчитывается от направления движения носителя, θ – от горизонтальной плоскости движения носителя в самолетной системе координат, причем первая формула в (5) выбирается в том случае, если взятый по модулю угловой коэффициент касательной k_{θ} , проведенной к линии ДЭР, меньше 1: $|k_{\theta}| < 1$. В противном случае выбирается вторая формула.

6. Угловой коэффициент $k_{ heta}$ вычисляется заранее взятием производной от heta по φ :

$$k_{\theta} = -\frac{\cos \alpha_j \tan \varphi}{\sqrt{\cos^2 \varphi - \cos^2 \alpha_j}},$$
(6)

причем его можно рассчитать только для угловых координат α, φ центра ДНА, так как в пределах узкой ДНА (например, $1^0 \times 1, 5^0$) линии ДЭР наклонены примерно под одним и тем же углом, и k_{θ} слабо зависит от α и φ .

7. Измеренное значение азимута φ округляется до ближайшего j_1 -го элемента дискретизации азимута, амплитуда A(i,j) запоминается в матрице $A_1(i,j_1)$ в целочисленных координатах дальности и азимута, а значение угла места θ – в матрице $\Theta(i,j_1)$. Незаполненным элементам дискретизации присваивается нулевое значение амплитуды. Если изображение формируется в координатах дальность – доплеровская частота, то элементами дискретизации являются элементы разрешения: $i = i_1$, $j = j_1$.

8. Операции п.п. 1 – 7 повторяются для всех положений ДНА. В результате формируется трехмерное изображение поверхности в зоне обзора РЛС в виде двумерных матриц A_1 и Θ . Учет времени tосуществляется в соответствии с методикой пространственно-временной обработки РЛИ [2] как в процессе сканирования луча РЛС, так и в последовательности периодов обзора.

9. Для удобства индикации матрицы A_l и Θ пересчитываются в матрицу амплитуд $A_l(i_l,j_l)$ и матрицу третьей координаты (высоты) $Z(i_l,j_l)$ в элементах дискретизации прямоугольной сетки координат. Так как возможна многозначность измерения θ или z(для высотных объектов), то в элементах дискретизации запоминается наибольшее значение θ или z. Для создания эффекта непрерывности изображения одна и та же амплитуда может присваиваться нескольким i_1, j_1 -м элементам дискретизации в малой окрестности. В области пересечения окрестностей амплитуды усредняются.

Порог обнаружения в п. 5 алгоритма выбирается в соответствии с методами обнаружения отраженного сигнала на фоне помех [5]. В силу статистического характера отражений на амплитудном изображении поверхности появляются спекл-шумы [6], эффективным способом подавления которых на практике является некогерентное накопление (усреднение).

Оценка повышения разрешающей способности по угловым координатам

Использование доплеровской селекции по частоте (без моноимпульсного метода измерения угловых координат) позволяет добиться повышения разрешающей способности в n_1 раз (n_1 - десятки). Для круговой ДНА с шириной на уровне 0,5 мощности $\Delta \varphi_{0,5} = \Delta \theta_{0,5}$ максимальная (когда линия ДЭР проходит через центр сечения ДНА) абсолютная погрешность $\Delta_{1\varphi}$ измерения азимута φ с учетом углового коэффициента (6) при $k_{\theta} < n_1$ составляет:

$$\Delta_{1\varphi} = \Delta \varphi_{0,5} / \sqrt{1 + k_{\theta}^2} ,$$

(5)

а при $k_{\theta} \geq n_1$: $\Delta_{1\varphi} = \Delta \varphi_{0,5} / n_1$. При этом разрешающая способность по азимуту повышается в $\Delta \varphi_{0,5} / \Delta_{1\varphi}$ раз: от $\sqrt{1 + k_{\theta}^2}$ до n_1 раз. Разрешающая способность по углу места подчинена обратной зависимости.

Применение моноимпульсного метода позволяет измерять угловые координаты одиночных точечных отражателей в зоне видимости РЛС с абсолютной погрешностью $\Delta_{2\varphi} = \Delta \varphi_{0,5} / n_2$ ($n_2 = 5 - 10$ [3]). В результате доплеровской фильтрации зона видимости уменьшается до размеров ДЭР, в составе которого находится один и реже два точечных элемента поверхности. Применение моноимпульсного метода совместно с доплеровской фильтрацией (без которой невозможно измерить угловые координаты множества элементов поверхности) приводит к повышению разрешающей способности максимально в n_2 раз. При этом должны выполняться неравенства:

$$n_2 > \sqrt{1 + k_\theta^2}$$
 при $k_\theta < n_1$ и $n_2 > n_1$ при $k_\theta \ge n_1$

Так как предельная абсолютная погрешность Δ_{θ} измерения угла места θ связана с абсолютной погрешностью Δ_{φ} измерения азимута φ линейной зависимостью $\Delta_{\theta} = |k_{\theta}| \cdot \Delta_{\varphi}$, то при $|k_{\theta}| < 1$ появляется эффект повышения точности определения угла места по формуле (5) по сравнению с точностью измерения азимута. Например, при $|k_{\theta}| = 0,3 - 0,5$, что соответствует наклону линии ДЭР в радиальном сечении ДНА примерно в $20^{0} - 30^{0}$ при выборе соответствующих значений α и φ , точность измерения угла места будет в 2 – 3 раза выше точности измерения азимута.

Возможности практической реализации

Реализация данного режима не потребует дополнительной аппаратуры, поскольку моноимпульсный способ измерения углов используется как в многофункциональных РЛС, так и в ПРЛС маловысотного полета. Загрузка вычислителя проводилась при реализации наиболее сложной составной части предлагаемого метода – алгоритма синтезирования апертуры. При этом выполнялось аналого-цифровое преобразование сигнала и его обработка на модуле ADP101 с процессором ADSP-TS-101S, поставляемом ЗАО «Инструментальной системы». Уровень загрузки по памяти и быстродействию не превысил 50- 60%.

Заключение

Предложенный метод формирования трехмерного изображения поверхности и объектов на поверхности дает возможность наблюдать изображение поверхности и высотных объектов на поверхности с дополнительной информацией о высоте, что повышает безопасность маловысотных полетов и вероятность распознавания объектов на поверхности в условиях отсутствия оптической видимости.

Литература

- Клочко В.К. Методика определения координат доплеровских элементов разрешения при получении трехмерных изображений поверхности // Автометрия. 2002. № 6. С. 12 – 20.
- Клочко В.К. Пространственно-временная обработка информации при получении трехмерных изображений поверхности // Радиотехника. 2004.
- № 6. C.3-11.
 - 3. Жибуртович Н.Ю., Абраменков В.В., Савинов Ю.И., Климов С.А., Чижов А.А. Определение радиолокационной системой с моноимпульсным пеленгатором угловых координат отдельных целей из состава группы // Радиотехника. 2005, № 6. С. 38 – 41.
 - Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов / Под ред. Г.С. Кондратенкова. М.: "Радиотехника", 2005. 368 с.
 - 5. Финкельштейн М.И. Основы радиолокации: Учебник для вузов. М.: Радио и связь, 1983. 536 с.
 - 6. Белокуров А.А. Методы сглаживания спекл-шума на радиолокационных изображениях земной поверхности // Зарубежная радиоэлектроника. 2002. № 6. С. 26 – 35.

НОВОСТИ

от ЗАО «Инструментальные системы» http://www.insys.ru Субмодуль цифрового ввода-вывода ADMFOTR4G

Субмодуль **ADMFOTR4G** двухканального высокоскоростного последовательного приемопередатчика построен на основе технологии ADM и устанавливается на базовые платы с интерфейсом **ADM**. Субмодуль предназначен для организации синхронного ввода/вывода потоков цифровых данных совместно с беспроцессорными базовыми модулями и модулями процессоров ЦОС производства ЗАО "Инструментальные Системы".

Внешний вид субмодуля:

Основные характеристики:

- Разъем и кабель 4X InfiniBand
- дуплексный канал ввода-вывода 4X
- Одновременный ввод потока 12 Гбит/сек и вывод потока 12 Гбит/сек
- Разъем RJ45
- Микросхема физического уровня DP83865
- Ethernet 10Base-T, !00Base-TX, 1000Base-T
- ПЛИС XC4VFX20
- Протокол интерфейса обеспечивает процессор PowerPC ПЛИС
- Контроллер интерфейса реализован в ПЛИС
- Физический уровень интерфейса линии RocketIO ПЛИС
- Опорный генератор 156,25/125 МГц