# УДК 621.38

# СИНТЕЗ АЛГОРИТМА ОЦЕНКИ И КОРРЕКЦИИ ПАРАМЕТРОВ КАНАЛА ПРИ ПРИЕМЕ OFDM-СИГНАЛОВ В СТАНДАРТЕ DVB-T

Бумагин А.В., Калашников К.С., Прудников А.А., Стешенко В.Б.

## Введение

В последние несколько лет вопросы практической реализации систем цифрового телевизионного вещания становятся ключевыми в связи с развитием технологий проектирования и производства современных систем на кристалле по наноразмерным проектным нормам [1]. Данная статья посвящена вопросам синтеза алгоритма оценки и коррекции параметров канала передачи в стандарте DVB-T.

Европейский стандарт DVB-T (ETSI EN300744) - Наземное цифровое телевизионное вещание, предполагающий использование когерентной OFDM с пилотными поднесущими [2] признан наиболее перспективным для реализации отечественных цифровых телевизионных систем.

При разработке приемных цифровых телевизионных систем, базирующихся на высокоскоростной когерентной OFDM и работающих в условиях многолучевого распространения, необходимо качественное решение задачи синтеза алгоритма оценки параметров канала, особенно с точки зрения аппаратной реализации.

Искажения, вызванные межсимвольной интерференцией (МСИ), являются одним из основных препятствий на пути повышения скорости и достоверности передачи данных по каналам даже при малых уровнях фонового шума. Они приводят к нарушению ортогональности сигналов, передаваемых на разных поднесущих OFDM-сигнала, в результате чего происходит искажение демодулируемой информации.

Все более широкое распространение получают мобильные системы, в которых дополнительно требуется решать задачу компенсации доплеровского смещения частоты. Поэтому неотъемлемой частью демодулятора приемного устройства, обрабатывающего OFDM-сигналы, является блок оценки и коррекции параметров канала (адаптивный эквалайзер).

Существуют две категории эквалайзеров (в зависимости от способа реализации): построенные в частотной или во временной областях. Вследствие того, что в DVB-T-системах Рассматриваются вопросы передачи информации в цифровых телевизионных и мобильных системах с использованием OFDM-сигналов. Синтезируются алгоритмы оценки и коррекции параметров канала передачи в стандарте DVB-Т. Приводятся результаты моделирования и экспериментальных исследований.

на этапе выделения поднесущих используется быстрое преобразование Фурье (БПФ), а также предусмотрены пилотные сигналы, то с точки зрения эффективности аппаратной реализации и рабочих характеристик целесообразно рассматривать эквалайзеры первого типа.

Синтезированный алгоритм предназначен для оценки и коррекции частотной характеристики (ЧХ) канала передачи в OFDM-системе, использующей пилотные поднесущие. Алгоритм разрабатывался с позиции максимального приближения к аппаратной реализации с использованием микросхемотехники ПЛИС и СБИС.

В процессе исследований произведена апробация алгоритма посредством моделирования в целочисленном базисе с учетом разрядностей данных, в результате которого также получены оценки его рабочих характеристик.

# Структура ОFDМ-кадра

Модулированная и кодированная информация в стандарте DVB-T передается в виде OFDM-символов [2]. Каждый кадр имеет длительность *T<sub>p</sub>* и состоит из 68 символов с номерами от 0 до 67, которые содержат полезные данные и служебную информацию. Четыре кадра образуют суперкадр. Каждый символ OFDM содержит 6817 поднесущих в режиме 8К и 1705 несущих в режиме 2К. Число поднесущих полезных данных является неизменным от символа к символу и за вычетом несущих, передающих служебную информацию, составляет 6048 и 1512 несущих в режимах 2К и 8К соответственно.



Рис. 1. Частотно-временной план OFDM-кадра.

Частотно-временной план сигнального кадра в стандарте DVB-T показан на рис.1.

Передаваемая в пределах кадра служебная информация содержит:

- поднесущие рассредоточенных пилот-сигналов;

 поднесущие с непрерывно повторяющимися пилотсигналами;

- поднесущие, содержащие информацию о параметрах передачи (TPS).

Перечисленные пилот-сигналы используются для кадровой, частотной и временной синхронизации, оценки параметров канала, идентификации режима передачи, компенсации амплитудных и фазовых искажений сигнала и пр. С помощью рассредоточенных и непрерывно повторяющихся пилот-сигналов передается опорная информация, параметры которой априорно известны в приемнике. Поднесущие пилот-сигналов передаются с добавочной мощностью в соотношении 16/9 относительно мощности несущих полезных данных. Каждый непрерывно повторяющийся пилот-сигнал совпадает с рассосредоточенными пилот-сигналами в каждом четвертом символе.

#### Алгоритм оценки и коррекции параметров канала

В основе предлагаемого алгоритма лежит прямой метод компенсации в частотной области. При использовании пилотных поднесущих последний является одним из наиболее эффективных.

Предположим, что на входе устройства на k-ой поднесущей присутствует сигнал вида  $x = Ae^{j\varphi}$ . На выходе необходимо получить сигнал  $y = A_0 e^{j\varphi_0}$  (это соответствует задаче о повороте вектора на комплексной плоскости с коррекцией по амплитуде). Выполним следующие преобразования:

$$y = A_0 e^{j\varphi_0} = A_0 \frac{A}{A} e^{j(\varphi_0 - \varphi + \varphi)} = \frac{A_0}{A} e^{-j(\varphi - \varphi_0)} A e^{j\varphi} = \eta x ,$$

где  $\eta$  – комплексный коэффициент коррекции, который необходимо вычислить. Представим его в виде:

$$\eta = \frac{A_0}{A} e^{-j(\varphi - \varphi_0)} = \frac{A_0}{A} \left[ \cos(\varphi - \varphi_0) - j\sin(\varphi - \varphi_0) \right].$$
(1)

Из последнего выражения видно, что для нахождения корректирующих коэффициентов необходимо вычислить амплитуду A и фазу  $\varphi$  входного сигнала, а также величины

$$\frac{A_0}{A}, \cos(\varphi - \varphi_0), \sin(\varphi - \varphi_0).$$
  
При этом  $\varphi_0 = \begin{cases} 0, w_k = 0\\ \sigma, w_k = 1 \end{cases}, A_0 = \frac{4}{3}$ 

С точки зрения аппаратной реализации, несмотря на то, что схема работает в режиме реального времени, к ней, как правило, не предъявляются жесткие требования в плане быстродействия. Для вычисления значений тригонометрических функций и выполнения операции деления целесообразно использовать итеративные алгоритмы CORDIC [3]. Это позволяет сэкономить память на табулировании значений нелинейных функций.

Оценка параметров канала осуществляется при помощи так называемых распределенных пилотов. Последние изменяют свое частотное положение от символа к символу с периодом в четыре символа. Согласно стандарту DVB-T пилоты обладают бинарной фазовой манипуляцией [2]:

$$\operatorname{Re}(c_{m,l,k}) = \frac{4}{3}(1 - 2w_k),$$
  

$$\operatorname{Im}(c_{m,l,k}) = 0$$

где  $\mathcal{W}_k$  – псевдослучайная последовательность,  $\mathcal{C}_{m,l,k}$  – ячейка, соответствующая распределенному пилоту, m – индекс кадра, l – индекс символа, k – индекс поднесущей в символе.

Корректирующие коэффициенты для поднесущих, содержащих передаваемую информацию, можно вычислить путем интерполяции найденных коэффициентов для распределенных пилотов.

На рис. 2 представлена функциональная схема устройства оценки параметров канала (для режима 2К).

Устройство оценки и коррекции параметров канала состоит из следующих блоков:

- 1) Блок вычисления номера символа [symbol №]
- 2) Блок выделения распределенных пилотов [pilots]

3) Блок вычисления корректирующих коэффициентов – [equalizing coefficients]

4) Фильтр, выполненный по алгоритму скользящего среднего – [moving average]

- 5) Блок интерполяции [interpolator]
- 6) Умножитель [Х]

Устройство, приведенное на рис. 2, работает следующим образом.

Один раз в четыре символа происходит вычисление номера пришедшего символа (блок [symbol №]), затем последний передается в блок [pilots], который осуществляет выборку отсчетов, соответствующих распределенным пилотным поднесущим (SP). Полученные отсчеты передаются на блок вычисления корректирующих коэффициентов. Последние поступают в фильтр, выполненный по методу скользящего среднего. Коррекция параметров канала осуществляется путем умножения полученных после интерполяции коэффициентов на входные данные.



Рис. 2. Функциональная схема устройства оценки параметров канала (для режима 2К).

#### Вычисление корректирующих коэффициентов

Согласно выражению (1), вычисление корректирующих коэффициентов для поднесущих реализуется в виде схемы, приведенной на рис. 3.



Рис.3. Схема вычисления корректирующих коэффициентов

Здесь: cordic Amp, phi – вычислитель амплитуды Amp и фазы phi сигнала по двум квадратурам (Re, Im); cordic A0/Amp - вычислитель A0/Amp; cordic sin, cos - вычислитель синуса и косинуса фазы корректирующего коэффициента при помощи алгоритма CORDIC; Х – комплексный умножитель.

Рассмотрим результаты моделирования схемы вычисления корректирующих коэффициентов в целочисленном базисе с учетом разрядностей данных. Моделирование производилось с фиксированной точкой: разрядность входных и выходных данных - 16 бит, количество итераций алгоритмов CORDIC - 16.

На рис. 4, (а,б) приведены графики относительных погрешностей действительной и мнимой частей выходного сигнала от искажения (в децибелах) амплитуды входного сигнала относительно максимального значения.



Рис.4. Зависимость относительных погрешностей действительной (а) и мнимой (б) частей выходного сигнала от искажения амплитуды (в дБ).

Из приведенных графиков видно, что рассмотренная схема не дает удовлетворительной точности. Это обусловлено большим динамическим диапазоном величины  $A_0 / A$ .

Преодолеть данный недостаток возможно посредством итеративного приближения коэффициентов коррекции, рассмотренного ниже.

Введем следующие обозначения:  $\alpha_i$  – коэффициент

ошибки амплитуды полученного вектора,  $\theta_{i}$  – ошибка фазы полученного вектора,  $\eta$  – корректирующий коэффициент, вычисленный по схеме на рис. 3. Тогда процесс вычисления коэффициентов коррекции можно представить следующим образом:

$$\begin{aligned} x_{0} &= Ae^{j\varphi}, \ \eta_{0} = 1 + 0j \\ \mathcal{U}mepaqua \ 1: \\ x_{1} &= Ae^{j\varphi}, \ \eta_{1} = \alpha_{1} \frac{A_{0}}{A} e^{-j(\varphi - \varphi_{0})} e^{j\theta_{1}}, \\ y_{1} &= \eta_{1}x_{1} = \alpha_{1} \frac{A_{0}}{A} e^{-j(\varphi - \varphi_{0})} e^{j\theta_{1}} Ae^{j\varphi} = \alpha_{1}A_{0}e^{j(\varphi_{0} + \theta_{1})} = A_{1}e^{j\psi_{1}}. \end{aligned}$$

Итерация п:

Mmonauua 0.

$$x_n = y_{n-1} = A_{n-1}e^{j\psi_{n-1}}$$
,  $\eta_n = \alpha_n \frac{A_0}{A_{n-1}}e^{-j(\psi_{n-1}-\varphi_0)}e^{j\theta_n}$ 

$$y_{n} = \eta_{n} x_{n} = \alpha_{n} \frac{A_{0}}{A_{n-1}} e^{-j(\psi_{n-1} - \varphi_{0})} e^{j\theta_{n}} A_{n-1} e^{j\psi_{n-1}} = \alpha_{n} A_{0} e^{j(\varphi_{0} + \theta_{n})}$$

 $\lim \alpha_n = 1, \ \lim \theta_n = 0 \implies \lim y_n = A_0 e^{j\varphi_0}$ 

Обозначим через  $\mathbf{H}_n$  такой корректирующий коэффициент, что  $\operatorname{H}_n x_0 = y_n^{'}$ . Преобразуем выражение для выходного сигнала:

$$y_n = \eta_n x_n = \eta_n y_{n-1} = \eta_n \eta_{n-1} x_{n-1} = \eta_n \eta_{n-1} \eta_{n-2} x_{n-2} = \dots = x_0 \prod_{i=0}^{n} \eta_i$$
,  
Следовательно,

$$\mathbf{H}_{n} = \prod_{i=0}^{n} \eta_{i} = \eta_{n} \prod_{i=0}^{n-1} \eta_{i} = \eta_{n} \mathbf{H}_{n-1} .$$
(3)

Для точного вычисления корректирующих коэффициентов достаточно двух итераций рассмотренного алгоритма (дальнейшее увеличение количества итераций не дает существенного увеличения точности). Это позволяет обойтись без обратной связи в схеме вычисления, что увеличивает быстродействие и устойчивость системы. Схема итеративного вычисления корректирующих коэффициентов представлена на рис. 5.



Рис. 5. Схема итеративного вычисления корректирующих коэффициентов.

На рис. 6 приведены графики зависимостей относительных погрешностей (усредненных по начальной фазе входного сигнала) мнимой и действительной частей выходного сигнала в зависимости от искажения входного сигнала относительно единицы.





Рис. 6. Средние относительные погрешности действительной (а) и мнимой (б) части выходного сигнала (в целых числах) в зависимости от искажения входного сигнала относительно единицы (в децибелах).

Анализ показывает, что в результате применения итеративного алгоритма повышена точность восстановления амплитуд мнимой и действительной части сигнала на порядок по сравнению с алгоритмом (1).

# Интерполяция корректирующих коэффициентов

Согласно стандарту DVB-T [3] частотное положение распределенных пилотных поднесущих повторяется с периодичностью в четыре символа. Корректирующие коэффициенты для последних вычисляются непосредственно в соответствии со схемой на рис. 3.

Вычисление корректирующих коэффициентов для поднесущих, содержащих данные, целесообразно осуществлять путем линейной интерполяции действительной и мнимой частей вычисленных коэффициентов для распределенных пилотов в соответствии со схемой на рис. 7 (закрашенными кругами обозначены поднесущие распределенных пилот-сигналов, незакрашенными – сигналов, содержащих данные).

Экспериментально установлено, что применительно к данной задаче выигрыш в точности квадратичной и кубической интерполяции по отношению к линейной не превосходит 1%.



Рис. 7. Схема формирования данных для линейной интерполяции для четырех OFDM-символов.

# Экспериментальные исследования рабочих характеристик алгоритма

Экспериментальные исследования производились посредством моделирования в целочисленном базисе с учетом разрядностей данных. Для этой цели использовалась модель OFDM-сигнала, синтезированного согласно стандарту DVB-T с учетом принятой в стандарте 20-лучевой модели распространения сигнала, ориентированной на наихудший случай приема. Условия эксперимента:

- Разрядность входных и выходных данных 16 бит;
- Режим передачи сигнала 2К, QPSK;
- Количество сэмплов 250;
- Длина сэмпла 4 символа.

На рис. 8 - 11 приведены спектры входного и выходного сигналов, частотные характеристики эквалайзера и сигнальное созвездие в полярной системе координат, полученные в результате экспериментов.



Рис. 8. Амплитудные спектры входного и выходного сигналов эквалайзера. По оси абсцисс - номер поднесущей, по оси ординат – амплитуда в относительных единицах.



Рис. 9. АЧХ эквалайзера. По оси абсцисс откладывается номер поднесущей, по оси ординат – амплитуда в относительных единицах.



Рис.10. ФЧХ эквалайзера. По оси абсцисс откладывается номер поднесущей, по оси ординат – фаза в радианах.



Рис.11. Сигнальное созвездие на выходе эквалайзера в полярной системе координат (для режима 2K, QPSK). По осям откладываются значения действительной и мнимой частей поднесущих в относительных единицах. Точки на горизонтальной оси соответствуют пилотным поднесущим.

Из приведенных графиков можно сделать вывод, что синтезированный алгоритм выполняет функцию восстановления параметров передаваемого сигнала в OFDM-канале с МСИ. Наибольшая ошибка в восстановлении спектра наблюдается при резких бросках амплитуды поднесущих входного сигнала и его значительном ослаблении, что обусловлено ошибкой интерполяции.

Рассмотрим результаты моделирования при наличии шума в канале. На рис. 12 приведены графики зависимостей средней ошибки восстановления амплитуды относительно истинного значения и средней абсолютной ошибки фазы в зависимости от ОСШ в канале с МСИ (для сравнения: в канале без шума – ошибка амплитуды – 0.45%, фазы – 0.3 °).





Рис. 12. Средняя ошибка восстановления амплитуды относительно истинного значения (а) и средняя абсолютная ошибка восстановления фазы (б) в зависимости от ОСШ в канале с МСИ.

### Заключение

Таким образом, на основании проведенных исследований получены следующие результаты. Синтезированный итеративный алгоритм оценки и коррекции параметров канала передачи OFDM-сигналов, работающий в частотной области, сохраняет работоспособность в канале с 20-лучевой моделью МСИ, рекомендованной стандартом DVB-T для проверки работоспособности радиоприемной аппаратуры. Экспериментально было установлено, что алгоритм сохраняет работоспособность вплоть до ОСШ 12 дБ в канале и максимального искажения поднесущих до 50 дБ. Устройство не содержит обратных связей, следовательно, обладает высоким быстродействием. Алгоритм ориентирован на внедрение в системах цифровой передачи информации, реализованных в аппаратуре СБИС и ПЛИС.

# Литература

- Ю.Б.Зубарев, М.И.Кривошеев, И.Н.Красносельский. Цифровое телевизионное вещание. Основы, методы, системы. – М.: Научно-исследовательский институт радио (НИИР), 2001. – 568 с.: ил.
- "Digital Video Broadcasting (DVB). Framing structure, channel coding and modulation for digital terrestrial television.", ETSI EN 300 744 v.1.5.1 (2004-11) European standart (Telecommunication series).
- А.В. Захаров, В.М. Хачумов. Алгоритмы CORDIC. Современное состояние и перспективы. Труды международной конференции «Программные системы: теория и приложения», Переславль-Залесский, М.: Физматлит, 2004, т.1, с. 353-372.