УДК 681.513.2

АНАЛИЗ МЕТОДОВ СИНТЕЗА ЦИФРОВЫХ ФИЛЬТРОВ ПО АНАЛОГОВЫМ МОДЕЛЯМ

Шилин А. Н., заведующий кафедрой электротехники Волгоградского государственного технического университета, д.т.н., профессор, e-mail: eltech@vstu.ru. Крутякова О. А., старший преподаватель кафедры электротехники Волгоградского государственного

Крутякова О. А., старшии препооаватель кафеоры электротехники Волгограоского госуоарственно технического университета, e-mail: eltech @vstu.ru.

Ключевые слова: аналоговая модель, цифровой фильтр, метод синтеза, передаточная функция, z-форма, частотная характеристика, устойчивость, численное решение.

Введение.

Постановка задачи

В настоящее время в связи широким внедрением цифровой обработки информации в различных отраслях техники возникает задача синтеза цифровых устройств по аналоговым моделям - электрическим и электронным схемам или по их передаточным функциям. Это связано с тем, что в работающих схемах используется большое количество информации, накопленной в результате настройки и эксплуатации аналоговых устройств. В качестве теоретической основы численного моделирования аналоговых динамических систем в настоящее время широко используются методы z-форм [1-2], основанные на использовании аппарата z- преобразования. Метод z-форм позволяет привести аналоговую модель системы в области изображений к квазидискретной, а затем по изображению функции сравнительно просто определяется рекуррентное уравнение.

В методе *z*-форм используются различные виды аппроксимаций при разложении в ряд функции $z = e^{p^T}$:

 $z = e^{pT} \approx 1 + pT$ (прямая разность или метод Эйлера), $z = e^{pT} \approx 1/(1 - pT)$ (обратная разность),

$$z = e^{pT} \approx \frac{1 + pT/2}{1 - pT/2}$$
 (метод трапеций или Тустена).

Использование методов аппроксимации позволяет получить формулы для перехода от непрерывной передаточной функции W(p) к дискретной передаточной функции W(z), а именно:

$$p = \frac{z-1}{T}; p = \frac{z-1}{zT}; p = \frac{2}{T} \left[\frac{z-1}{z+1} \right].$$

Рассмотренные выше методы позволяют моделировать задачи с нулевыми начальными условиями, представленные в форме передаточных функций. Для моделирования систем, использующих в качестве моделей электрические схемы замещения с ненулевыми начальными условиями, разработан операторно-дискретный метод анализа (ОДМ)[3]. Для решения конкретных задач возникают вопросы выбора метода (*z*-форм или

Приведен анализ методов синтеза цифровых фильтров по аналоговым моделям. В качестве моделей использованы передаточные функции фильтров. Для перехода от аналоговых моделей к импульсным моделям применены методы z-форм. Результаты анализа позволяют обоснованно выбирать метод по критериям устойчивости численного решения и минимального искажения частотной характеристики.

ОДМ) и параметров численных моделей. Необходимо отметить, что в литературных источниках приводятся рекомендации по применению методов моделирования, которые основаны на опытах их практического использования [1-2] и имеют общий характер. Поэтому для обоснованного выбора метода определения параметров численных моделей и учета ограничений на их применение необходимо проведение сравнительного анализа всех основных методов.

В предлагаемой статье приведены результаты исследования влияния основных параметров дифференциальных уравнений и значений периода дискретизации на точность и устойчивость моделирования, а именно: значений периода дискретизации, частоты и периода затухания динамического звена.

Конформные отображения

При моделировании с использованием различных методов *z*-форм основным вопросом является устойчивость численной модели, а именно каким образом область устойчивости из *Р*-плоскости переходит в Zплоскость. Хорошо известные преобразования выполняются либо численно, либо в прямоугольной системе координат [4-5]. Однако для анализа конформного отображения целесообразно использовать полярную систему координат, поскольку устойчивость характеризуется разностью между модулем z и радиусом единичной окружности. Известно, что при стремлении периода дискретизации T к нулю $|z| \rightarrow 1$, поэтому аналитическое представление в полярной системе координат позволяет получить выражение скорости приближения модуля z - полюсов к границе устойчивости при уменьшении периода дискретизации ($T \rightarrow 0$). Кроме того, в источнике [6] приводится оценка искажений частотных характеристик в цифровой форме. Эта оценка осуществляется визуально по неравномерности частотных сеток в Z плоскости. Исследование в полярной системе координат позволяет аналитически определить частотные искажения для различных *Z*-форм.

Кроме известных методов аппроксимации первого порядка, таких как прямая разность, обратная разность и метод трапеций, из литературных источников известен метод преобразования без потерь [6]. Это выражение было получено и нами при выводе *z*-формы, эквивалентной операторно-дискретному методу, использующему комбинацию прямой и обратной разности, при равенстве нулю параметра затухания в передаточной функции звена второго порядка.

Рассмотрим соответствие между P и Z-плоскостями при преобразовании $_{Z} = e^{pT}$, а также использовании различных видов аппроксимации. Поскольку исследовать отображение областей полюсов из P-плоскости в Z-плоскость в операторно-дискретном методе невозможно, проведем подобное исследование для Z-преобразования без потерь.

Преобразование плоскости, осуществляемое аналитической функцией z = f(p), обладает следующим важным свойством в окрестности точки р, для которой $z' \neq 0$. Бесконечно малые векторы всех направлений, выходящие из этой точки, увеличиваются (или уменьшаются) по своей длине в одно и то же число раз, равное |z'|, и поворачиваются на один и тот же угол, равный $\arg z'$. Таким образом, фигуры в бесконечно малой области преобразуются в себе подобные - сохраняют форму. Такое преобразование является конформным отображением. Фигуры конечных размеров искажаются, но углы между двумя кривыми сохраняются. Таким образом, с помощью аналитических функций можно получить множество прямоугольных систем криволинейных координат. Обратно, для любого конформного отображения существует некоторая ортогональная сетка кривых, которая преобразуется в прямоугольную декартову сетку [7].

Известно, что при дискретизации непрерывной функции с ограниченным спектром (ω_c – высшая гармоническая составляющая сигнала или частота среза) P-плоскость делится на бесконечное число полос. Определим предельные соотношения для основной полосы в области полюсов.

Пусть переменная в P-плоскости имеет выражение $p = \delta + j\omega$, и поскольку для устойчивой системы $\delta < 0$, рассмотрим левую полуплоскость. Частота и период дискретизации определяется с помощью теоремы Котельникова, а именно $\omega = 2\omega_C$ или $T = \pi/\omega_C$. По-

этому основная полоса расположена в диапазоне частот от $-\pi/T$ до π/T . Поскольку период дискретизации T гораздо меньше постоянной времени затухания $\tau = 1/|\delta|$, то $|\delta|$ не может быть больше 1/T. Таким образом, в основной полосе область полюсов находится в прямоугольнике, ограниченном прямыми $\delta = 0$, $\delta = -1/T$, $\omega = \pm \pi/T$ (рис.1, а). Область *p*-полюсов отображается преобразованием $z = e^{pT}$ в круг с центром в начале координат и единичным радиусом, как показано на рис.1, б. Точки правой половины *P*-плоскости отображаются в область вне окружности единичного радиуса на *Z*-плоскости. Эта область будет областью неустойчивости.

При неограниченном увеличении затухания $\delta \to -\infty$ устойчивая область полюсов преобразуется в единичный круг.

Проводя исследование преобразования P-плоскости на Z-плоскость с помощью различных видов аппроксимации, введем новые обозначения: $\delta T = \delta'$ - приведенный коэффициент затухания, $\omega/\omega_C = \omega'$ - приведенная частота. При этом δ' принадлежит интервалу [-1;0], а ω' - [-1;1].

Метод Эйлера. Используя формулу перехода p = (z-1)/T, выразим *z*-переменную через *p*-переменную

$$z = 1 + \delta T + j\omega T \,. \tag{1}$$

Пусть z = x + jy, тогда из (1) с учетом новых обозначений следует:

$$x = 1 + \delta T = 1 + \delta', \quad y = \omega T = \pi \omega'; \tag{2}$$

Найдем модуль и аргумент z:

$$|z| = \sqrt{\left(\delta'+1\right)^2 + \left(\pi\omega'\right)^2}, \ \varphi = \operatorname{arctg} \frac{\pi\omega'}{\delta'+1}.$$
(3)

Определим отображение области p - полюсов на Z - плоскость в полярных координатах (рис. 2, а). Из отображения следует, что p-область по методу Эйлера преобразуется в прямоугольник, который выходит за пределы единичного круга и ограничен в пределах $0 \le x \le 1$, $-\pi \le y \le \pi$. Следовательно, при некоторых параметрах численной модели возможно неустойчивое решение. При преобразовании прямые линии, параллельные осям координат, в плоскости P переходят в прямые линии на плоскости Z.

Рис. 1. Отображение области устойчивости p-плоскости на z-плоскость.

Рис. 2. Отображение области устойчивости р-плоскости на z-плоскость с помощью: а) метода Эйлера, б) метода обратных розностей.

Метод обратных разностей. Используя формулу перехода p = (z-1)/(zT), выразим *z*-переменную через *p*-переменную

$$z = \frac{1 - \delta T}{(1 - \delta T)^{2} + (\omega T)^{2}} + j \frac{\omega T}{(1 - \delta T)^{2} + (\omega T)^{2}},$$
 (4)

или

$$x = \frac{1 - \delta T}{(1 - \delta T)^{2} + (\omega T)^{2}}, \quad y = \frac{\omega T}{(1 - \delta T)^{2} + (\omega T)^{2}}.$$
 (5)

С учетом обозначений (2), получим:

$$x = \frac{1 - \delta'}{(1 - \delta')^2 + (\pi \omega')^2}, \quad y = \frac{\pi \omega'}{(1 - \delta')^2 + (\pi \omega')^2}.$$
 (6)

Определим модуль и аргумент z:

$$|z| = \sqrt{\left(\frac{1-\delta'}{\left(1-\delta'\right)^{2}+\left(\pi\omega'\right)^{2}}\right)^{2}+\left(\frac{\pi\omega'}{\left(1-\delta'\right)^{2}+\left(\pi\omega'\right)^{2}}\right)^{2}} = ,$$

$$\frac{1}{\sqrt{\left(1-\delta'\right)^{2}+\left(\pi\omega'\right)^{2}}}$$

$$\varphi = \arctan\frac{\pi\omega'}{1-\delta'}.$$
 (7)

Отображение по формулам (7) области полюсов в P-плоскости на Z-плоскость показано на рис. 2, б, согласно которому при всех параметрах численное решение устойчиво, причем с некоторым запасом. На рисунке видно, что рассматриваемое преобразование отображает левую полуплоскость переменной p в круг половинного радиуса с центром в точке $\operatorname{Re}(z) = 1/2$.

Если один из полюсов системы расположен близко к точке (0,0) в *P*-области, то необходимо учитывать погрешность нахождения этого полюса, чтобы система не вышла из области устойчивости при применении данного метода. Это единственная точка, находящаяся на границе области устойчивости при данном преобразовании. **Метод Тустена.** Используя формулу перехода p = 2(z-1)/((z+1)T), выразим *z*-переменную через *p*-переменную

$$z = \frac{4 - (\delta T)^{2} - (\omega T)^{2}}{(\delta T - 2)^{2} + (\omega T)^{2}} + j \frac{4\omega T}{(\delta T - 2)^{2} + (\omega T)^{2}},$$
(8)

rge
$$x = \frac{4 - (\delta T)^2 - (\omega T)^2}{(\delta T - 2)^2 + (\omega T)^2},$$

$$y = \frac{4\omega T}{(\delta T - 2)^2 + (\omega T)^2}.$$
(9)

Тогда с учетом новых переменных (2) получим:

$$x = \frac{4 - \delta'^2 - (\pi \omega')^2}{(\delta' - 2)^2 + (\pi \omega')^2}, \quad y = \frac{4\pi \omega'}{(\delta' - 2)^2 + (\pi \omega')^2}.$$
 (10)

Определим модуль и аргумент *z*:

$$|z| = \frac{\sqrt{\left(4 - \delta'^{2} - \pi^{2} \omega'^{2}\right)^{2} + 16\pi^{2} \omega'^{2}}}{\left(\delta' - 2\right)^{2} + (\pi\omega')^{2}},$$

$$\varphi = \begin{cases} \operatorname{arctg}(\frac{4\pi\omega'}{4 - {\delta'}^{2} - \pi^{2} {\omega'}^{2}}), & \operatorname{ecnu} 4 - {\delta'}^{2} - \pi^{2} {\omega'}^{2} \ge 0\\ \operatorname{arctg}(\frac{4\pi\omega'}{4 - {\delta'}^{2} - \pi^{2} {\omega'}^{2}}) + \pi, \operatorname{ecnu} 4 - {\delta'}^{2} - \pi^{2} {\omega'}^{2} \prec 0 \end{cases}.$$
(11)

С помощью формул (11) выполним отображение P-области в Z-область (рис.2, в). Как видно из рисунка, отображением P-области на Z-плоскость является часть области единичного круга, и поэтому при всех параметрах численное решение устойчиво, однако в сравнении с предыдущим методом имеется меньший запас по устойчивости. При данном преобразовании границей устойчивости является отрезок 1 - 5 в P-плоскости ($\delta = 0$,), который преобразуется в часть единичной окружности.

Дискретное интегральное преобразование без потерь. Данное преобразование также является алгебраическим преобразованием плоскости комплексной переменной *P* на плоскость *Z* при подстановке:

Рис. 2. Отображение области устойчивости р-плоскости на z-плоскость с помощью: в) метод Тутсена, г) метод преобразования без потерь.

$$p = \frac{1 - z^{-1}}{z^{-1/2}T} \, .$$

Выразим z-переменную через p-переменную, зная, что $p=\delta+j\omega_{\pm}$

$$z_{12} = 1 + \frac{pT}{2} \left(pT \pm \sqrt{p^2 T^2 + 4} \right).$$
(12)

Выполним преобразование выражения (12), используя показательную форму записи комплексных чисел и введя новые переменные (2). Получим

$$z_{12} = \frac{1}{2} \left(\delta^{\prime 2} - \pi^{2} \omega^{\prime 2} + 2 \pm P \sqrt{D} \cos \gamma + j (2 \delta \pi \omega^{\prime} \pm P \sqrt{D} \sin \gamma) \right), (13)$$
rge
$$P = \sqrt{\delta^{\prime 2} + \pi^{2} \omega^{\prime 2}}, \quad D = \sqrt{\left(\delta^{\prime 2} - \pi^{2} \omega^{\prime 2} + 4\right)^{2} + \left(2 \delta^{\prime} \pi \omega^{\prime}\right)^{2}},$$

$$\gamma = \alpha + \frac{1}{2} \beta, \quad \alpha = \operatorname{arctg} \left(\frac{\pi \omega^{\prime}}{\delta^{\prime}} \right) + \pi,$$

$$\beta = \begin{cases} \operatorname{arctg} \left(\frac{2 \delta \pi \omega^{\prime}}{\delta^{\prime^{2}} - \pi^{2} \omega^{\prime^{2}} + 4} \right), \quad e c \pi u \quad \delta^{\prime^{2}} - \pi^{2} \omega^{\prime^{2}} + 4 \ge 0 \\ \operatorname{arctg} \left(\frac{2 \delta \pi \omega^{\prime}}{\delta^{\prime^{2}} - \pi^{2} \omega^{\prime^{2}} + 4} \right) - \pi, \quad e c \pi u \quad \delta^{\prime^{2}} - \pi^{2} \omega^{\prime^{2}} + 4 < 0 \end{cases}.$$
(14)

Определив модуль и аргумент z_1 , найдем отображение P-области в Z-область (рис. 2, г). Аналогичное исследование проведено для z_2 , но в этом случае полученное отображение значительно превышает область круга единичного радиуса на Z-плоскости.

Определим чувствительность методов *z*-форм на границе устойчивости:

$$\Delta |z| \approx \frac{d|z|}{dT} \Delta T \cdot$$

Определим $\lim_{T \to 0} (\frac{d|z|}{dT})$ для каждого метода:

Прямая разность:
$$\lim_{T \to 0} \left(\frac{2\delta(T\delta+1) + 2T\omega^2}{2\sqrt{(T\delta+1)^2 + T^2\omega^2}} \right) = \delta,$$

Обратная разность:

$$\lim_{T \to 0} \left(\frac{1}{\sqrt{\left(\left(1 - T\delta \right)^2 + T^2 \omega \right)^3}} \right) = \delta_1$$

 $\delta(1-T\delta)$

Метод трапеций:

$$\lim_{T \to 0} \left(\frac{-4\delta(T^2\delta^2 + T^2\omega^2 - 4)}{(T^2\delta^2 - 4\delta T + T^2\omega^2 + 4)\sqrt{16 - 8\delta^2 T^2 + 8T^2\omega^2 + \delta^2 T^4 + 2\delta^2\omega^2 T^4 + T^4\omega^4}} \right) = \delta^2$$

В связи с громоздкостью выражения (13) аналитическое определение предела затруднено, и поэтому, в случае необходимости, для конкретной задачи определяется его численное значение с помощью известных пакетов математических программ.

Таким образом, при использовании *z*-форм только в методе прямой разности могут возникнуть случаи, когда устойчивая система может перейти в область неустойчивости. В остальных случаях преобразование из *P*-области в *Z*-область происходит с некоторым запасом устойчивости.

Рис. 3. Зависимости коэффициента линейности от приведенной частоты для следующих методов аппроксимации: а) прямая разности, б) обратная разность, в) метод трапеций, г) метод преобразования без потерь.

Коэффициент линейности

Известно, что при равномерной дискретизации частоты в P – области при точном преобразовании $z = e^{pT}$ осуществляется равномерная круговая дискретизация по окружности единичного радиуса. При использовании различных методов *z*-форм нарушается равномерность круговой дискретизации, поэтому проведем количественную оценку искажений полос частот для каждой *z*-формы, определив коэффициент линейности по формуле:

$$k = \frac{\varphi(\omega')/\varphi(\omega' + \Delta\omega)}{\omega'/(\omega' + \Delta\omega)},$$
(13)

где $\Delta \omega$ – шаг изменения ω' , в данном случае $\omega' = 0,01$.

На рис. З представлены графические зависимости коэффициента линейности от приведенной частоты для следующих видов аппроксимации: а) прямая разность, б) обратная разность, в) метод трапеций, г) метод преобразования без потерь, причем номеру графика соответствуют следующие значения приведенного коэффициента затухания: 1 - $\delta_1 = -0.1$, 2 - $\delta_2 = -0.5$, 3 - $\delta_3 = -0.9$.

Заключение

Из проведенного анализа следует, что наименьшие искажения распределения частот при отображении области p – полюсов на Z - плоскость вносят метод обратной разности и метод трапеций.

Литература

 Куо, Б. Теория и проектирование цифровых систем управления: Пер. с англ. - М.: Машиностроение, 1986.

- Шипилло, В.П. Операторно-рекуррентный анализ электрических цепей и систем. - М.: Энергоатомиздат, 1991.
- 3. Шилин, А. Н. Операторно-дискретный метод анализа электрических цепей / Приборы и системы. Управление, контроль, диагностика. - 2000. - № 7. - С. 50-56.
- Шилин, А. Н. Анализ точности моделирования аналоговых САУ / А. Н. Шилин, К. Е. Кострюков - Приборы и системы. Управление, контроль, диагностика. - 2006. - № 7. - с. 18-21.
- Шилин, А. Н. Исследование методов цифрового моделирования аналоговых САУ / А. Н. Шилин, Е. Г. Зенина, С. А. Бедкин – Приборы и системы. Управление, контроль, диагностика. - 2001. - № 7. - с. 46-50.
- Мулявка, Я. Схемы на операционных усилителях с переключаемыми конденсаторами: Пер. с польск. - М.: Мир, 1992. – 416 с.
- Бронштейн, И. Н. Справочник по математике / И. Н. Бронштейн, К. А. Семендяев - М.: Наука, 1964. – 608 с.

THE ANALYSIS OF METHODS OF DIGITAL FILTERS SYNTHESIS ON ANALOG MODELS

A. N. Shilin, O. A. Krutyakova

The article gives the analysis of methods of digital filters synthesis on analog models. As models transfer functions of filters are used. Methods of Z – forms are applied to transition from analog models to pulse models. Results of the analysis allow to choose a method by criteria of stability of the numerical decision and the minimal distortion of the frequency characteristic.