УЛК 621.391

МНОГОСКОРОСТНАЯ ОБРАБОТКА СИГНАЛОВ В ЗАЛАЧАХ РЕЖЕКНИИ УЗКОПОЛОСНЫХ ПОМЕХ

Витязев В.В., д.т.н., профессор, зав. кафедрой Рязанского государственного радиотехнического университета, e-mail: vityazev.v.v@rsreu.ru; Никишкин П.Б., аспирант, м.н.с. Рязанского государственного радиотехнического университета.

MULTIRATE SIGNAL PROCESSING FOR NARROWBAND NOISE REJECTION

Vitvazev V.V., Nikishkin P.B.

Narrowband filters based methods for high selectivity frequency selection systems construction are considered. These methods are implemented in two-step structure using multirate singal processing. Modeling of the proposed approach and research of its effeciency are conducted.

Key word: multirate, processing, rejection, noise, narrowband, frequency selection, modeling.

Ключевые слова: многоскоростная, обработка, режекция, помеха, узкополосная, частотная селекция, моделирование.

Цифровые режекторные фильтры узкополосных помех: на основе децимации и итерполяции импульсной характеристики Постановка задачи

Одной из классических задач цифровой частотной селекции сигналов является режекция (подавление) узкополосных помех и, в частности, низкочастотной составляющей. Если при этом ширина полосы режекции составляет незначительную часть (менее одной десятой) от общей рабочей полосы частот, которая определяет частоту дискретизации цифрового сигнала, то порядок *N* проектируемого КИХ-фильтра будет расти пропорционально отношению частоты дискретизации к ширине полосы режекции и составит сотни, тысячи и десятки тысяч единиц.

С целью реализации потенциальной возможности многократного уменьшения приведенных вычислительных затрат при построении узкополосного режекторного фильтра в работе [1] за основу был принят метод компенсации помехи по структуре на рис. 1,а, и предложена двухступенчатая реализация, представленная на рис. 1,б, отличающаяся от известных использованием эффекта децимации и интерполяции импульсной характеристики при реализации узкополосного фильтра с передаточной функцией H(z) в цепи компенсации помехи.

Предполагается, что из входного сигнала x(nT), задержанного на половину длины импульсной характеристики узкополосного фильтра, вычитается сигнал на его выходе $w_2(nT)$, что и компенсирует в значительной степени влияние узкополосной помехи в заданной полосе частот относительно центральной частоты ω_0 . Заметим, что степень режекции помехи в данной схеме определяется точностью аппроксимации желаемой частотной характеристики узкополосного фильтра в поло-

Рассматриваются методы построения системы частотной селекции сигналов с высокой избирательностью на основе узкополосного фильтра в цепи компенсации помех, реализуемого по двухступенчатой структуре с использованием многоскоростной обработки сигналов. Проводится моделирование и исследование эффективности данного подхода с позиции достижимости заданных характеристик и требуемых вычислительных затрат.

> се пропускания. Это накладывает особые требования на синтез передаточной функции узкополосного фильтра в полосе пропускания, одновременно ослабляя требования к точности аппроксимации в полосе непропускания.

> Возможны два подхода к эффективной реализации узкополосного фильтра с передаточной функцией $H(z) = H_1(z)H_2(z)$ и произвольной центральной частотой ω_0 полосы пропускания. Первый предполагает использование структуры с квадратурной модуляцией, позволяющей свести задачу построения цифрового полосового фильтра к задаче построения НЧ фильтра с заданными свойствами частотной избирательности. Второй исходит из предпосылки, что как гребенчатый (с передаточной функцией $H_1(z)$), так и сглаживающий (с передаточной функцией $H_2(z)$) фильтры реализуются с исполь-

> зованием комплексных импульсных характеристик и соответственно произвольным положением центральной частоты полосы пропускания [2].

> Необходимость использования квадратурной модуляции или комплексных импульсных характеристик как минимум удваивает вычислительные затраты. Вместе с тем, в частном случае, когда значение центральной частоты ω_0 и коэффициент децимации v импульсной характеристики гребенчатого фильтра отвечают условию $\omega_0 = 2\pi k / v$, где k – целое число, импульсные характеристики гребенчатого и сглаживающего фильтров принимают действительные значения, а следовательно, вычислительные затраты становятся соизмеримыми с затратами на режекторный фильтр с нулевой центральной частотой полосы режекции.

Рис. 1. Структурные схемы узкополосного режекторного фильтра: а – без децимации; б – с децимацией и интерполяцией импульсной характеристики

Общая вычислительная эффективность рассматриваемой структуры узкополосного режекторного фильтра полностью определяется степенью уменьшения вычислительных затрат на реализацию узкополосного фильтра в цепи компенсации помехи.

Решение задачи оптимизации

Пусть показатели частотной избирательности проектируемого фильтра с желаемой АЧХ $H(\omega)$: коэффициент прямоугольности АЧХ α , показатель узкополосности β , логарифмический показатель частотной избирательности $L(\varepsilon_{1 don}, \varepsilon_{2 don})$ принимают следующие значения [3]:

$$\begin{split} \alpha &= \omega_{c1} / (\omega_{c2} - \omega_{c1}); \ \beta &= 2\pi / \omega_{c1}; \\ L(\varepsilon_{1 \partial on}, \varepsilon_{2 \partial on}) &= -\frac{2}{3} \lg(10 \cdot \varepsilon_{1 \partial on} \cdot \varepsilon_{2 \partial on}). \end{split}$$

При этом порядок КИХ-фильтра, реализуемого по обычной трансверсальной структуре, $N = \alpha \beta L(\varepsilon_{1 \partial on}, \varepsilon_{2 \partial on})$, однозначно определяет требуемый объем вычислительных затрат в единицу времени $R_T = N f_{\rm xs}$.

Для рассматриваемой двухкаскадной структуры приведенные вычислительные затраты

$$R_T = \left\lfloor \frac{\alpha}{\nu} + \frac{\nu}{\beta - \gamma \nu} \right\rfloor \beta L \left(\frac{\varepsilon_1}{2}, \varepsilon_2 \right) f_{\kappa \sigma}.$$
(1)

определяются как показателями частотной избирательности режекторного фильтра, так и принятым значением коэффициента прореживания импульсной характеристики гребенчатого фильтра *v* !

Взяв производную правой части выражения (1) по v и решив уравнение $\partial R_T / \partial v = 0$, найдем оптимальное значение коэффициента прореживания:

$$v_{1opt} = (\beta \sqrt{\alpha \beta} - \alpha \beta \gamma) / (\beta - \alpha \gamma^{2}),$$
(2)
rge $\gamma = (1 + 2\alpha) / \alpha.$

Минимальный объем вычислительных затрат на реализацию двухкаскадной структуры узкополосного фильтра

$$R_{T}(v_{opt}) = \min_{\nu} R_{T} = \frac{a\alpha(a-b\gamma)-b^{2}\beta}{b(a-b\gamma)} L\left(\frac{\varepsilon_{1}}{2},\varepsilon_{2}\right) f_{\kappa s}, \quad (3)$$

где $a = \beta - \gamma \alpha$, $b = \sqrt{\alpha \beta} - \gamma \alpha$.

Для узкополосных фильтров $\beta >> \gamma \alpha$, и оценка вычислительных затрат (3) принимает приближенное значение

$$R_T^* = 2\sqrt{\alpha\beta}L(\varepsilon_1/2,\varepsilon_2)f_{\kappa\sigma}$$

Вывод: при оптимальном значении коэффициента прореживания v_{opt} приведенные вычислительные затраты уменьшаются пропорционально корню квадратному от порядка фильтра N.

Моделирование

На рис. 2 представлены результаты моделирования в среде MATLAB+Simulink узкополосного режекторного фильтра без децимации и интерполяции, а на рис. 3 – с децимацией и интерполяцией импульсной характеристики.

Предполагалось, что проектируемый узкополосный режекторный фильтр, работающий на частоте дискретизации 3000 Гц, должен обладать следующими свойствами частотной избирательности относительно центральной частоты полосы режекции, равной 1 кГц: коэффициент прямоугольности АЧХ $\alpha = 2,5$; показатель узкополосности $\beta = 150$; неравномерность АЧХ в полосе пропускания $\varepsilon_{1don} = 10^{-3}$; уровень затухания в зоне непрозрачности $\varepsilon_{2don} = 10^{-4}$.

Подставив заданные параметры частотной избирательности в (2) и (3), получим: $v_{opt} = 14$ и $R_T^*(v_{opt}) = 778469$ операций умножения /секунду. Таким образом, по отношению к однокаскадной реализации узкополосного режекторного КИХ-фильтра, требующей $N = \alpha \beta L \times$

 $\times(\varepsilon_{1\partial on}, \varepsilon_{2\partial on}) = 7537500$ операций умножения / секунду, приведенные вычислительные затраты уменьшаются на порядок.

Рис. 2. Результаты моделирования: а – АЧХ режекторного фильтра, полученная с помощью программы FDAToo; б – АЧХ режекторного фильтра без децимации

и интерполяции, полученная моделированием структуры, представленной на рис. 1,а

Альтернативным способом эффективной реализации узкополосного режекторного фильтра является использование децимации и интерполяции преобразуемого сигнала в цепи компенсации [3, 4].

Цифровые режекторные фильтры узкополосных помех: на основе децимации и интерполяции преобразуемого сигнала в цепи компенсации Постановка задачи

На рис. 4 представлена структурная схема режекторного фильтра, реализуемого на основе децимации и интерполяции преобразуемого сигнала в цепи компенсации. Предполагается, как и ранее, что из входного сигнала x(nT), задержанного на половину длины импульсной характеристики узкополосного фильтра, вычитается сигнал на его выходе w(nT), что и компенсирует в значительной степени влияние узкополосной помехи в заданной полосе частот относительно центральной частоты ω_0 . Вычислительная эффективность рассматриваемой структуры режекторного фильтра полностью определяется степенью уменьшения вычислительных затрат на реализацию узкополосного фильтра в цепи компенсации помехи, что достигается оптимизацией его параметров.

Для рассматриваемой структуры узкополосного фильтра приведенные вычислительные затраты

$$R_T = 2\alpha\beta L \left(\frac{\varepsilon_1}{2}, \varepsilon_2\right) \frac{1}{\nu} f_{\kappa_0}$$
(4)

определяются как показателями частотной избирательности режекторного фильтра, так и принятым значением коэффициента прореживания v сигнала $w^*(nvT)$ на выходе фильтра-дециматора с передаточной функцией $H_0^*(z)$.

Рис. 4. Структурная схема режекторного фильтра, реализуемого на основе децимации и интерполяции преобразуемого сигнала в цепи компенсации

Выражение (4) достигает своего минимума при максимально допустимом значении коэффициента децимации [3, 4]

 $v_{\rm max} = \alpha \beta / (2\alpha + 1).$

Моделирование

На рис. 5 представлены результаты моделирования узкополосного режекторного фильтра с децимацией и интерполяцией преобразуемого сигнала в цепи компенсации для рассматриваемого выше примера.

Сравнительный анализ характеристик, представленных на рис. 2, 3 и 5, говорит о достижимости заданных свойств частотной избирательности узкополосного режекторного фильтра (рис. 2), но при существенно меньших вычислительных затратах. Для рассматриваемого примера $v_{\rm max} = \alpha\beta/(2\alpha+1) = 62$ и $R_{T\rm min} = 243145$ операций умножения/секунду, что в 31 раз меньше по отношению к прямой форме реализации режекторного фильтра и в 3 раза меньше по отношению к методу реализации на основе децимации и интерполяции импульсной характеристики узкополосного фильтра.

При переходе к многоступенчатой многоскоростной реализации узкополосного фильтра в цепи компенсации возможно дальнейшее уменьшение вычислительных затрат, но при этом надо учитывать «паразитное» влияние эффекта наложения (элайзинга) при уменьшении частоты дискретизации и задавать более жесткие требования к уровню затухания в зоне его непрозрачности (полосе пропускания режекторного фильтра) [4].

Цифровой полосовой фильтр с высокой прямоугольностью АЧХ Постановка задачи

Рассматривается задача синтеза структуры НЧ фильтра с высокой прямоугольностью АЧХ ($\alpha >> 1$) и относительно небольшим значением показателя узкополосности ($\beta < \alpha$). Предполагается, что задача построения полосового фильтра может быть сведена к задаче построения НЧ фильтра с использованием структуры с квадратурной модуляцией [3, 4]. Относительно малое значение показателя узкополосности β не позволяет эффективно использовать методы децимации и интерполяции преобразуемого сигнала или импульсной характеристики фильтра для существенно-

б – АЧХ режекторного фильтра с децимацией и интерполяцией преобразуемого сигнала в цепи компенсации ижение (4) достигает своего минимума при макго уменьшения приведенных вычислительных затрат.

В работе [1] впервые был предложен метод построения структуры НЧ фильтра с высокой прямоугольностью АЧХ с применением узкополосного режекторного фильтра с передаточной функцией $H_1(z)$, формирующего переходную зону проектируемого широкополосного фильтра по представленной выше (рис. 1,6) структуре, и сглаживающего фильтра с передаточной функцией $H_2(z)$, подавляющего все высокочастотные составляющие за полосой режекции входного фильтра (рис. 6).

с высокой прямоугольностью АЧХ

Порядок N_1 узкополосного режекторного фильтра определяется порядком N проектируемого широкополосного фильтра, так как оба фильтра имеют одну и туже относительную ширину переходной зоны АЧХ, но вычислительные затраты на его реализацию могут уменьшаться пропорционально коэффициенту децимации v импульсной характеристики гребенчатого фильтра с передаточной функцией $H_{1\Gamma}(z)$, используемого в цепи компен-

сации с общей передаточной функцией $H_1^*(z)$.

Увеличение коэффициента децимации *v* возможно только путем уменьшения ширины полосы режекции и, как следствие, пропорциональным увеличением показателя узкополосности фильтра в цепи компенсации. С другой стороны, уменьшение ширины полосы режекции приводит к увеличению показателя прямоугольности АЧХ *α*,

выходного сглаживающего фильтра с функцией передачи $H_2(z)$ и соответственно пропорциональному увеличению вычислительных затрат на его реализацию.

Решение задачи оптимизации

Поиск оптимального значения коэффициента децимации ν импульсной характеристики гребенчатого фильтра приводит к решению следующей задачи оптимизации:

$$R_T(v) = \left(\frac{2N_{1\Gamma}}{v} + 2N_{1C} + N_2\right) f_{\kappa\sigma} \to \min_v, \tag{5}$$

где $N_{1\Gamma} \cong N$ и N_{1C} – порядки цифрового гребенчатого и сглаживающего фильтров в цепи компенсации; N_2 – порядок выходного сглаживающего фильтра. Увеличение затрат в 2 раза на реализацию цепи компенсации связано с использованием квадратурной модуляции и появлением дополнительного квадратурного канала.

Порядок гребенчатого фильтра

$$N_{1\Gamma} = \alpha \beta L \left(\frac{\varepsilon_{1_{\mathcal{A} O \Pi}}}{2}, \varepsilon_{2_{\mathcal{A} O \Pi}} \right), \tag{6}$$

несколько превышает порядок *N* проектируемого широкополосного фильтра, что связано с повышением требований точности аппроксимации его частотной характеристики в зоне режекции.

Порядки N_{1C} и N_2 зависят от заданной ширины полосы режекции $\Delta \omega_p$ и выбранного значения коэффициента децимации ν импульсной характеристики гребенчатого фильтра:

$$N_{1C} \cong \frac{2\pi\nu}{2\pi - \Delta\omega_{p}\nu} L\left(\frac{\varepsilon_{1_{\mathcal{AOI}}}}{2}, \varepsilon_{2_{\mathcal{AOI}}}\right);$$

$$N_{2} \cong \frac{2\pi}{\Delta\omega_{p}} L\left(\frac{\varepsilon_{1_{\mathcal{AOI}}}}{2}, \varepsilon_{2_{\mathcal{AOI}}}\right).$$
(7)

Предполагается, что при $\alpha >> 1$ ширина переходной зоны АЧХ режекторного фильтра многократно меньше полосы режекции $\Delta \omega_p$ и ее влиянием при оценке порядков N_{1C} и N_2 сглаживающих фильтров можно пренебречь. Как и следовало ожидать, при расширении полосы режекции $\Delta \omega_p$ пропорционально уменьшается порядок N_2 выходного сглаживающего фильтра, но увеличивается порядок N_{1C} сглаживающего фильтра в цепи компенсации. Заметим, что при этом для выбранного значения ширины полосы режекции $\Delta \omega_p$ на максимально допустимое значение коэффициента децимации ν накладывается ограничение:

$$v \le \frac{\pi}{\Delta \omega_P} = \frac{f_{\kappa_B}}{2\Delta f_P} \,. \tag{8}$$

Подставив (6) и (7) в (5), получим

$$R_T(\nu, \Delta \omega_p) = \left(\frac{2\alpha\beta}{\nu} + \frac{4\pi\nu}{2\pi - \Delta \omega_p \nu} + \frac{2\pi}{\Delta \omega_p}\right) \times \tag{9}$$

$$\times L\left(\frac{\varepsilon_{1_{\mathcal{AOH}}}}{2},\varepsilon_{2_{\mathcal{AOH}}}\right)f_{\kappa_{\theta}} \to \min_{\nu,\Delta\omega_{p}}.$$

Задача нелинейного программирования (9) решается путем простого перебора целочисленных значений коэффициента децимации v на ограниченном множестве значений (8). Заметим, что при каждом фиксированном целочисленном значении коэффициента децимации vможно найти оптимальное значение ширины полосы режекции $\Delta \omega_{P_{opt}}$, при котором достигается минимум целевой функции (9):

$$\left(\frac{4\pi v}{2\pi - \Delta \omega_p v} + \frac{2\pi}{\Delta \omega_p} \right) \rightarrow \min_{\nu, \Delta \omega_p} ,$$

если $\Delta \omega_{P_{opt}} = \frac{2(\sqrt{2} - 1)\pi}{v} .$ (10)

В частном случае, когда центральная частота ω_0 полосы режекции кратна периоду $2\pi/\nu$, цепь компенсации не требует введения квадратурной модуляции, а следовательно вычислительные затраты на ее реализацию уменьшаются в 2 раза, и задача оптимизации (9) принимает вид:

$$R_{T}(\nu, \Delta \omega_{p}) = \left(\frac{\alpha\beta}{\nu} + \frac{2\pi\nu}{2\pi - \Delta \omega_{p}\nu} + \frac{2\pi}{\Delta \omega_{p}}\right) \times L\left(\frac{\varepsilon_{1_{\mathcal{AOII}}}}{2}, \varepsilon_{2_{\mathcal{AOII}}}\right) f_{\kappa_{\mathcal{B}}} \to \min_{\nu, \Delta \omega_{p}}.$$
(11)

При этом для каждого фиксированного целочисленного значения коэффициента децимации *v* на ограниченном множестве значений (8) оптимальное значение $\Delta \omega_{P_{men}}$ ширины полосы режекции достигается при

$$\Delta \omega_{P_{opt}} = \frac{\pi}{v} , \qquad (12)$$

т.е. фактически при максимально допустимом его значении при заданной ширине полосы режекции.

Заметим, что вычислительные затраты в соответствии с (11) могут быть существенно уменьшены только при условии многократного уменьшения затрат на реализацию гребенчатого фильтра (первое слагаемое), что достигается при условии, что коэффициент децимации $v \ge 4$. Дополнительное условие – центральная частота ω_0 полосы режекции кратна периоду $2\pi/v$ при заданном ее значении в еще большей степени ограничивает множество допустимых значений v и тем самым ускоряет поиск оптимального сочетания параметров v и $\Delta \omega_{P_{vu}}$.

Как показали расчеты, ожидаемый выигрыш в минимизации вычислительных затрат по отношению к обычной некаскадной структуре лежит в диапазоне от 1,5 до 5 раз, в зависимости от показателя прямоугольности АЧХ проектируемого широкополосного фильтра.

Моделирование

С целью иллюстрации достижимости заданных частотных характеристик широкополосного НЧ фильтра с относительно высокой прямоугольностью АЧХ в рамках рассматриваемой структуры было произведено моделирование в среде MATLAB+Simulink при использовании в качестве узкополосного режекторного фильтра его реализации на основе децимации и интерполяции импульсной характеристики (рис. 1,а). Результаты моделирования представлены на рис. 7.

Рис. 7. Результат моделирования НЧ фильтра с высокой прямоугольностью АЧХ

Заключение

С целью реализации потенциальной возможности многократного уменьшения приведенных вычислительных затрат при построении узкополосного режекторного фильтра за основу был принят метод компенсации помехи по двухступенчатой реализации, отличающийся от известных использованием эффекта децимации и интерполяции импульсной характеристики при реализации узкополосного фильтра в цепи компенсации помехи. Показано, что при оптимальном значении коэффициента прореживания v_{opt} приведенные вычислительные затраты уменьшаются пропорционально корню квадратному от порядка фильтра N.

Альтернативным способом эффективной реализации узкополосного режекторного фильтра является использование децимации и интерполяции преобразуемого сигнала в цепи компенсации. Сравнительный анализ представленных характеристик говорит о достижимости заданных свойств частотной избирательности узкополосного режекторного фильтра при существенно меньших вычислительных затратах. При переходе к многоступенчатой многоскоростной реализации узкополосного фильтра в цепи компенсации возможно дальнейшее уменьшение вычислительных затрат, но при этом надо учитывать «паразитное» влияние эффекта наложения (элайзинга) при уменьшении частоты дискретизации и задавать более жесткие требования к уровню затухания в зоне его непрозрачности (полосе пропускания режекторного фильтра).

Рассматривается задача синтеза структуры НЧ фильтра с высокой прямоугольностью АЧХ ($\alpha >> 1$) и относительно небольшим значением показателя узкополосности ($\beta < \alpha$). Предложен метод построения структуры НЧ фильтра с высокой прямоугольностью АЧХ с применением узкополосного режекторного фильтра, формирующего переходную зону проектируемого широкополосного фильтра, и сглаживающего фильтра, подавляющего все высокочастотные составляющие за полосой режекции входного фильтра. Как показали расчеты, ожидаемый выигрыш в минимизации вычислительных затрат по отношению к обычной некаскадной структуре лежит в диапазоне от 1,5 до 5 раз, в зависимости от показателя прямоугольности АЧХ проектируемого широкополосного фильтра.

Литература

1. Витязев В.В., Горюнов Ю.Н. Оптимальное проектирование цифровых полосовых фильтров с высокой прямоугольностью // Электросвязь. – 1995. № 4. – С. 30-32.

2. Витязев В.В., Морозов Е.А. Оптимальное проектирование цифровых полосовых фильтров на процессорах обработки сигналов // Электросвязь. – 1995. № 12. – С. 29-31.

3. Витязев В.В. Цифровая частотная селекция сигналов. М.: Радио и связь, 1993. 240 с.

4. Витязев В.В. Многоскоростная обработка сигналов. – М.: Горячая линия – Телеком, 2017. – 336 с.