УДК 621.391

ОБЕСПЕЧЕНИЕ РАЗРЕШЕННОГО ОБРАЗА ПРИ ИНВЕРСНОЙ ФИЛЬТРАЦИИ СИГНАЛОВ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Хафизов Р.Г., д.т.н., профессор, профессор кафедры радиотехнических и медико-биологических систем Поволжского государственного технологического университета, Йошкар-Ола, e-mail: HafizovRG@volgatech.net.

PROVIDING A RESOLVED IMAGE WITH INVERSE FILTERING OF SIGNALS IN CONDITIONS OF UNCERTAINTY

Khafizov R.G.

An approach is proposed to ensure a resolved image at the output of an inverse filter, specified by a finite impulse response, during cyclic processing of signals under conditions of uncertainty. It is shown that the cyclic signal processing by an inverse filter allows to obtain a zero level of side lobes at the output. The approach to eliminating the uncertainty caused by the presence of zero components in the signal spectrum is based on a change of the signal dimension. A method is proposed for minimizing the level of fluctuation noise at the output of the inverse filter by minimizing the squared norm of the filter impulse response.

Key words: inverse filter, cyclic signal procession, complex signal, signals resolving.

Ключевые слова: инверсный фильтр, циклическая обработка сигналов, комплекснозначный сигнал, разрешение сигналов.

Введение

Инверсная фильтрация сигналов является эффективным способом подавления корреляционного шума [1]. Анализ работ по инверсной фильтрации позволяет выделить два вида неопределенностей при синтезе и анализе инверсного фильтра: неопределенность, вызванная наличием нулевых компонент в спектре сиг-

нала, и неопределенность, обусловленная воздействием флуктуационного шума на входе фильтра [2-8]. Если в первом случае решаемыми проблемами являются проблемы физической реализуемости и подавления корреляционного шума на выходе фильтра, то во втором случае к указанным проблемам добавляется еще и проблема подавления флуктуационного шума на выходе фильтра. При этом задача устранения неопределенности при инверсной фильтрации решается как в частотной области путем ограничения спектра анализируемого сигнала [3, 4, 6-8], так и во временной области, например, методом деконволюции [2, 5].

Одним из методов обработки сигналов является циклическая обработка [9, 10]. Циклическая обработка сигналов дает возможность произвести расчет конечной импульсной характеристики (КИХ) фильтра и непосредственно использовать ее для реализации алгоритма фильтрации. Целью данной работы является исследование и разработка подхода к обеспечению разрешенного образа на выходе инверсного фильтра в условиях неопределенности при циклической обработке сигналов. При этом анализируемые сигналы $s(n) = \{s(n)\}, n = 0, 1, ..., N-1$, и КИХ фильтра $\Lambda = \{\lambda(n)\}, n = 0, 1, ..., N-1$, и КИХ фильтра $\Lambda = \{\lambda(n)\}, n = 0, 1, ..., N-1$, предполагаются комплекснозначными, т.е. $s(n = s_1(n) + is_2(n)$ и $\lambda(n) = \lambda_1(n) + i\lambda_2(n)$, где N – размерность сигнала и КИХ фильтра.

Предложен подход к обеспечению разрешенного образа на выходе инверсного фильтра, заданного конечной импульсной характеристикой, при циклической обработке сигналов в условиях неопределенности. Показано, что циклическая обработка сигналов инверсным фильтром позволяет получить на выходе нулевой уровень боковых лепестков. Подход к устранению неопределенности, вызванной наличием нулевых компонент в спектре сигнала, основан на изменении размерности сигнала. Предложен способ минимизации уровня флуктуационного шума на выходе инверсного фильтра путем минимизации квадрата нормы импульсной характеристики фильтра.

Расчет КИХ инверсного фильтра

Выражение для сигнала на выходе линейного фильтра $\mathbf{H} = \{\eta(m)\}$, заданного КИХ $\mathbf{\Lambda} = \{\lambda(n)\}$, при обработке входного сигнала $\mathbf{s} = \{s(n)\}$ [9]:

$$\eta(m) = \sum_{n=0}^{N-1} s(n)\lambda(m-n).$$

Для случая инверсной фильтрации сигнала на выходе фильтра:

$$\eta(m) = \sum_{n=0}^{N-1} s(n)\lambda(m-n) = \mathbf{K}(m) ,$$

где K(*m*) – символ Кронекера. Данное выражение может быть записано в матричной форме:

$$S \Lambda = K.$$

где, с учетом циклической обработки:

$$\mathbf{S} = \begin{bmatrix} s(0) & s(1) & \dots & s(N-1) \\ s(1) & s(2) & \dots & s(0) \\ \dots & \dots & \dots & \dots \\ s(N-1) & s(0) & \dots & s(N-2) \end{bmatrix},$$
$$\mathbf{\Lambda} = \begin{bmatrix} \lambda(0) \\ \lambda(1) \\ \dots \\ \lambda(N-1) \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}.$$

Отсчеты КИХ $\lambda(n)$ инверсного фильтра могут быть найдены в соответствии с правилом Крамера [11]:

$$\lambda(n) = \frac{\Delta_n}{\Delta},$$

где Δ – определитель матрицы S, Δ_n – определитель матрицы, полученной путем замены *n*-го столбца матрицы S матрицей-столбцом K.

Циклическая обработка инверсным фильтром с КИХ позволяет получить нулевой уровень боковых лепестков. Уровень флуктуационного шума $\sigma_{_{ebtx}}^2$ на выходе инверсного фильтра определяется [9]:

$$\sigma_{\rm sbix}^2 = R_{\rm sbix}(0) = 2\sigma_{\rm sx}^2 \left\| \mathbf{\Lambda} \right\|^2, \tag{1}$$

где $R_{sbix}(0)$ – нулевой отсчет корреляционной функции на выходе инверсного фильтра, $\|\mathbf{\Lambda}\|$ – норма КИХ фильтра, σ_{ex}^2 – дисперсия составляющих комплекснозначного случайного процесса $\xi(n) = \xi_1(n) + i\xi_2(n)$, $n = 0, 1, \dots, N$ -1, на входе фильтра. При этом $\sigma_{ex}^2 = \sigma_{\xi_1}^2 = \sigma_{\xi_2}^2$. Как показано в работе [9], комплекснозначный случайный процесс на выходе фильтра коррелирован, а мощность выходного шума пропорциональна квадрату нормы КИХ фильтра.

Рассмотрим пример расчета КИХ инверсного фильтра для сигнала $\mathbf{s} = \{s(n)\}, n = 0, 1, ..., 4$ (рис. 1,*a*): $\mathbf{s} = \{0, 3i; 1, 2 + 0, 7i; 0, 9-i; -0, 7; -0, 6 + 0, 5i\}$. Получаем:

$$\mathbf{S} = \begin{bmatrix} 0,3i & 1,2+0,7i & 0,9-i & -0,7 & -0,6+0,5i \\ 1,2+0,7i & 0,9-i & -0,7 & -0,6+0,5i & 0,3i \\ 0,9-i & -0,7 & -0,6+0,5i & 0,3i & 1,2+0,7i \\ -0,7 & -0,6+0,5i & 0,3i & 1,2+0,7i & 0,9-i \\ -0,6+0,5i & 0,3i & 1,2+0,7i & 0,9-i & -0,7 \end{bmatrix},$$

 Δ = -8,03-1,984*i*; Δ_0 = -1,626 - 2,215*i*; Δ_1 = -3,207 + 2,241*i*; Δ_2 = -2,053 - 1,752*i*; Δ_3 = -2,528 + 2,86*i*; Δ_4 = 1,082 + 1,594*i*. КИХ инверсного фильтра (рис. 1, *б*):

$$\Lambda = \{0, 255 + 0, 213i; 0, 311 - 0, 356i; 0, 292 + 0, 146i; 0, 214 - 0, 409i; -0, 173 - 0, 156i\}.$$
(2)

Результат фильтрации: H = {1; 0; 0; 0; 0} (рис. 1, е).

Рассмотрим применение инверсного фильтра с КИХ для решения задачи разрешения сигналов. Пусть входной сигнал \mathbf{u}_{ex} образован путем суммирования сигнала s и задержанной на 3 отсчета копии сигнала s с масштабом 4. Таким образом, поучаем сигнал:

$$\mathbf{u}_{ex} = \{0, 3i; 1, 2+0, 7i; 0, 9-i; -0, 7+$$

+1,2i; 4,2+3,3i; 3,6-4i; -2,8; -2,4+2i.

Пусть также положение сигнала не известно. Произведем ациклическую фильтрацию сигнала с КИХ (2). Результат фильтрации (рис. 2, *a*):

 $\mathbf{H}_{au} = \{0,047 - 0,052i; 0,024 - 0,244i; 0,187 - 0,22i; \}$

0,446-0,208i; 1,095-0,976i; 0,703-0,83i;.

1,014+0,245i; 3,813+0,22i; -0,446+0,208i;

-0,095+0,976i; -0,75+0,882i; -1,038.

Рис. 2. Результат фильтрации: а – ациклическая, б – циклическая

На рис. 2, а наблюдается отклик от мощного сигнала, а отклик от слабого сигнала маскируется боковыми лепестками. В работе [9] предложен алгоритм ЧКШС, применение которого к отсчетам ациклической свертки дает результаты, аналогичные результатам циклической свертки. В соответствии с алгоритмом ЧКШС, необходимо сложить отсчеты ациклической свертки с интервалом в *N* отсчетов, т.е.:

$$\begin{split} &\eta_u(n) = \eta_{au}(n) + \eta_{au}(n+) + \eta_{au}(n+2N) + \dots, n = 0, 1, \dots, N-1. \\ &\text{Для рассматриваемого примера получаем (рис. 2, б):} \\ &\eta_u(0) = \eta_{au}(0) + \eta_{au}(5) + \eta_{au}(10) = \\ &= 0,047 - 0,052i + 0,703 - 0,83i - 0,75 + 0,882i = 0; \\ &\eta_u(1) = \eta_{au}(1) + \eta_{au}(6) + \eta_{au}(11) = \\ &= 0,024 - 0,244i + 1,014 + 0,245i - 1,038 = 0; \\ &\eta_u(2) = \eta_{au}(2) + \eta_{au}(7) = 0,187 - 0,22i + 3,813 + 0,22i = 4; \\ &\eta_u(3) = \eta_{au}(3) + \eta_{au}(8) = 0,446 - 0,208i - 0,446 + 0,208i = 0; \\ &\eta_u(4) = \eta_{au}(4) + \eta_{au}(9) = 1,095 - 0,976i - 0,095 + 0,976i = 1. \\ &\text{ На рис. 2, 6 можно наблюдать два отклика с соот-} \end{split}$$

на рис. 2, о можно наолюдать два отклика с соответствующими амплитудами. Положение на дистанции первого сигнала формируется в момент времени N-1 (в нашем случае это в момент n = 4). Положение на дистанции последующих сигналов относительно первого определяется:

 $t_s = \operatorname{mod}(m_s + 1, N), \tag{3}$

где t_s – положение *s*-го сигнала на дистанции, m_s – номер *s*-го отклика. При m_1 = 4 получаем t_1 = 0, а при m_2 = 2 – t_2 = 3, что соответствует условиям примера. Таким образом, циклическая обработка сигналов инверсным фильтром с КИХ позволяет разрешать сигналы и обеспечивает нулевой уровень боковых лепестков.

Если спектр $\mathbf{P} = \{\rho(m)\}, m = 0, 1, ..., N-1$, сигнала s содержит равные нулю компоненты, то определитель Δ матрицы S становится равным нулю и вычисление ИХ инверсного фильтра становится невозможным. Например, пусть задан сигнал:

 $\mathbf{S} = \{0,075 + 0,534i; 1 + 0,844i; 0,702 - 1,146i; \\ -0,623 - 0,234i; -0,354 + 0,501i\},$ (4) cnextp kotoporo: $\mathbf{B} = \{0, 0 + 0, 400i; 0; 0, 0, 446, 0, 516i; 1,402, 1,445i; \}$

 $\mathbf{P} = \{0,8+0,499i; 0; 0,646-0,516i; -1,492-1,445i; 0,421+4,133i\},\$

содержит равную нулю компоненту $\rho(2) = 0$. Определитель Δ матрицы S равен нулю и расчет КИХ инверсного фильтра становится проблематичным.

Устранение неопределенности методом интерполяции спектра

В работе [12] рассмотрен метод интерполяции спектра сигнала добавлением нулей. При этом, как указано в [12], дополнение нулями не улучшает разрешающую способность этого преобразования, а позволяет получить интерполированное преобразование более сглаженной формы. В спектре дополненного нулями сигнала образуются компоненты, находящиеся между компонентами спектра исходного, т.е. не дополненного нулями, сигнала (рис. 3).

Пусть модификация сигнала s производится дополнением нулей так, что размерность сигнала s_м становится равной *M*:

$$\mathbf{s}_{MOO} = \left\{ s(0), s(1), \dots, s(N-1), \underbrace{0, 0, \dots, 0}_{M-N} \right\}.$$
 (5)

Тогда спектр $\mathbf{P}_{MOO} = \{ \rho_{MOO}(m) \}, m = 0, 1, ..., M-1, моди$ $фицированного сигнала <math>\mathbf{s}_{M}$ равен:

$$\rho_{MOO}(m) = \sum_{n=0}^{M-1} s_{MOO}(n) e^{\frac{-i2\pi mn}{M}} = \sum_{n=0}^{N-1} s(n) e^{\frac{-i2\pi mn}{M}}$$

Если величина M кратна N, то наблюдается совпадение гармоник спектров исходного и модифицированного сигналов (рис. 3, *a*). Если же величина M не кратна N, то при интерполяции спектра сигнала в его составе не будут равные нулю компоненты (рис. 3, *б*).

Таким образом, если спектр сигнала содержит равную нулю компоненту и определитель Δ матрицы S также равен нулю, то требуется изменить интервал определителя сигнала, например, изменив размерность сигнала путем добавления нулей.

Запишем сигнал (4) в виде:

$$\mathbf{s}_{M} = \{0,075 + 0,534i; 1 + 0,844i; 0,702 - 1,146i; -0,623 - 0,234i; -0,354 + 0,501i; 0\}.$$
(6)

Спектр такого сигнала:

 $\mathbf{P}_{M} = \{0, 8 + 0, 499i; 0, 329 - 0, 268i; 0, 935 + 0, 249i; 0, 046 - 0, 721i; -3, 379 + 0, 152i; 1, 719 + 3, 293i\},\$

не содержит равных нулю компонент. КИХ инверсного фильтра для модифицированного сигнала:

 $\Lambda = \{0,607 + 0,299i; 0,453 - 0,629i; 0,229 - 0,003i; -0,073 - 0,579i; -0,343 + 0,115i; 0,026 + 0,236i\},$ (7) а результат фильтрации: $\mathbf{H} = \{1; 0; 0; 0; 0; 0\}$. Квадрат нор-

Рис. 3. Интерполяция спектра сигнала с размерностью N = 5 при дополнении нулями до размерности: а) M = 10, б) M = 7

мы КИХ такого фильтра равен 1,638. Тогда в соответствии с выражением (1) уровень шума на выходе фильтра будет определяться соотношением: $\sigma_{abix}^2 = 3,276 \sigma_{ex}^2$.

Импульсная характеристика инверсного фильтра изменяется в зависимости от количества n_0 добавляемых нулей в сигнал. При этом суммы отсчетов сигнала $s_{\rm M}$ и КИХ Λ фильтра независимо от количества n_0 добавляемых нулей в сигнал остаются постоянными. Для рассматриваемого примера:

$$\sum_{n=0}^{M-1} \lambda(n) = 0.9 - 0.561i, \quad \sum_{n=0}^{M-1} s_M(n) = 0.8 + 0.499i.$$

Кроме того, сумма отсчетов КИХ Λ фильтра равна величине обратной сумме отсчетов сигнала s_{M} :

$$\sum_{n=0}^{M-1} \lambda(n) = \frac{1}{\sum_{n=0}^{M-1} s_M(n)} = \frac{1}{0,8+0,499i} = 0,9-0,561i.$$

Квадрат нормы ИХ также зависит от количества добавляемых нулей в сигнал. На рис. 4 представлена полученная экспериментальным путем зависимость квадрат нормы КИХ инверсного фильтра от количества добавляемых в сигнал (4) нулей n_0 .

Рис. 4. Зависимость квадрат нормы КИХ инверсного фильтра от количества добавляемых нулей n₀

При $n_0 = 5$, 10, 15 и т.д. значение квадрат нормы КИХ инверсного фильтра стремится к бесконечности, т.к. размерность M модифицированного сигнала s_M (5) становится кратной размерности N сигнала s (4), и опреде-

литель Δ матрицы $S_{\scriptscriptstyle M}$ становится равным нулю. Получено, что для сигнала (4) минимальный уровень флуктуационного шума на выходе инверсного фильтра достигается при добавлении в сигнал двух нулей. Уровень шума на выходе фильтра при этом будет определяться соотношением: $\sigma_{\rm gbx}^2 = 2,014 \, \sigma_{\rm gx}^2$.

Рассмотрим пример разрешения сигналов инверсным фильтром с использованием метода интерполяции спектра. Пусть теперь входной сигнал \mathbf{u}_{ex} образован путем суммирования сигнала \mathbf{s} (4) и задержанной на 1 отсчет копии сигнала 4s:

 $\mathbf{u}_{ex} = \{0,075 + 0,534i; 1,3 + 2,98i; 4,702 + 2,23i; 2,185 - 4,818i; -2,846 - 0,435i; -1,416 + 2,004i\}.$

Сигнал s (4) содержит в своем спектре равную нулю гармонику, поэтому КИХ фильтра будем формировать по модифицированному сигналу (6). Результат ациклической фильтрации сигнала с КИХ (7) (рис. 5, *a*):

$$\begin{split} \mathbf{H}_{au} &= \{-0,757+0,211i; \ -0,887+0,215i; \ 0,979-0,682i; \\ 1,459-0,794i; \ 1; \ 4,124-0,032i; \ 0,757-0,211i; \\ 0,887-0,215i; \ -0,979+0,682i; \ -1,459+0,794i\}. \end{split}$$

На рис. 5, а наблюдается отклик от мощного сигнала, а отклик от слабого сигнала маскируется боковыми лепестками. Вычислим с помощью алгоритма ЧКШС результат циклической фильтрации. Размерность сигнала s_{M} увеличилась по сравнению с сигналом s, поэтому складываем отсчеты ациклической свертки с интервалом в M отсчетов. Получаем (рис. 5, *б*):

 $\mathbf{H}_{u} = \{0; 0; 0; 0; 1; 4, 124 - 0, 032i\}.$

На рис. 5, б уже наблюдаются два отклика в моменты времени, определяемые выражением (3), $t_1 = 0$ и $t_2 = 1$, что соответствует условиям примера. Таким образом, циклическая обработка сигналов инверсным фильтром с КИХ, сформированной по модифицированному сигналу, позволяет разрешать сигналы.

Заключение

Рассмотрен подход к обеспечению разрешенного образа на выходе инверсного фильтра, заданного конечной импульсной характеристикой, при циклической обработке сигналов в условиях неопределенности, вызванной наличием нулевых компонент в спектре сигнала и воздействием флуктуационного шума на входе

Рис. 5. Результат фильтрации: а – ациклическая, б – циклическая

Предложен подход к устранению неопределенности, вызванной наличием нулевых компонент в спектре сигнала, основанный на изменении размерности сигнала путем добавления нулей. В спектре дополненного нулями сигнала образуются компоненты, находящиеся между компонентами спектра исходного, т.е. не дополненного нулями, сигнала. При этом квадрат нормы ИХ зависит от количества добавляемых нулей в сигнал. Предложен подход к минимизации уровня флуктуационного шума на выходе инверсного фильтра путем минимизации квадрата нормы ИХ фильтра подбором количества добавляемых нулей в сигнал

Рассмотрен пример разрешения сигналов инверсным фильтром с использованием метода интерполяции спектра. Показано, что циклическая обработка сигналов инверсным фильтром с КИХ, сформированной по модифицированному сигналу, позволяет разрешать сигналы.

Литература

1. Василенко Г.И. Голографическое опознавание образов. – М.: Сов. радио, 1977.

2. Schneider M., Habets E.A.P. Iterative DFT-Domain Inverse Filter Optimization Using a Weighted Least-Squares Criterion // IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2019. Vol. 27, № 12. Pp. 1957-1969.

3. Zhang Yo. et al. Super-resolution surface mapping

for scanning radar: inverse filtering based on the fast iterative adaptive approach // IEEE transactions on geoscience and remote sensing. 2018. Vol. 56. №. 1. Pp. 127-144. DOI: 10.1109/TGRS.2017.2743263.

4. Mudukutore A.S., Chandrasekar V., Keeler R.J. Pul-se compression for weather radars // IEEE Transactions on Geoscience and Remote Sensing. 1998. Vol. 36, № 1. Pp. 125-142.

5. Nelander A. Processing for continuous radar waveforms. 2004 International Waveform Diversity & Design Conference. Edinburgh, 2004. Pp. 1-5. DOI: 10.1109/IWDDC.20 04.8317557.

6. Абраменков В.В., Васильченко О.В., Семченков С.М., Печенев Е.А. Инверсная фильтрация импульсных сигналов // Электромагнитные волны и электронные системы. 2017. № 4. С. 42-53.

7. Семченков С.М., Печенев Е.А. Способ повышения разрешающей способности за счет инверсной фильтрации импульсных сигналов // Радиопромышленность. 2017. № 3. С. 103-109.

8. Гонсалес Р., Вудс Р. Цифровая обработка изображений. – М.: Техносфера. 2005.

9. Введение в контурный анализ и его приложения к обработке изображений и сигналов / Под ред. Я.А. Фурмана. – М.: Физматлит, 2002.

10. Хафизов Р.Г., Охотников С.А. Линейная фильтрация непрерывных контуров изображений, заданных в комплекснозначном виде // Компьютерная оптика. – 2010. – Т. 34, № 3, – С. 408-416.

11. Корн Г. А., Корн Т. М. Справочник по математике для научных работников и инженеров. М.: Наука. Главная редакция Физико-математической литературы; Издание 4-е, 1977.

12. Марпл С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990.