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Рассмотрены основные методы и алгоритмы двумерной циф-
ровой Фурье-обработки двумерных финитных сигналов, а также 
основные этапы развития теоретических основ этого вида обра-
ботки. Отмечается не тривиальность перехода от одномерной к 
двумерной Фурье-обработке финитных сигналов. Поскольку этот 
переход является в большей степени качественным, а не количе-
ственным переходом, рассмотрены теория, методы и алгоритмы 
определения огибающих двумерных дискретных финитных дей-
ствительных сигналов на основе двумерных дискретных преобра-
зований Фурье с варьируемыми параметрами. Кратко приведены 
основы теории двумерных дискретных унитарных преобразований 
Фурье с варьируемыми параметрами. Данные преобразования явля-
ются обобщением классического двумерного дискретного преобра-
зования Фурье и позволяют путем варьирования параметров 
«управлять» свойствами преобразований Фурье. Приведены аксио-
матические положения двумерной Фурье-обработке финитных сиг-
налов. Рассмотрены алгоритмы вычисления классического двумер-
ного дискретного преобразования Фурье и двумерных дискретных 
преобразований Фурье с варьируемыми параметрами, основанные 
на сепарабельности ядер этих преобразований. Дано обобщение 
дискретного преобразования Гильберта дискретных финитных 
действительных сигналов на двумерный случай. Отмечена нетри-
виальность такого обобщения, поскольку переход от одномерного к 
двумерному дискретному преобразованию Гильберта также явля-
ется, прежде всего, не количественным, а качественным перехо-
дом. Даны алгоритмы определения огибающих двумерных дискрет-
ных финитных действительных сигналов на основе классического 
двумерного дискретного преобразования Фурье и двумерного дис-
кретного преобразования Фурье с варьируемыми параметрами. 
Теоретические результаты, полученные в статье, подтверждены 
математическим моделированием. Доказано, что не принятие во 
внимание при цифровой Фурье-обработке вида используемой оги-
бающей, может приводить к потере информации о свойствах и 
состояниях исследуемых объектов, явлений и процессов, а также 
досадным ошибкам. 
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Введение 

Расширение приложений цифровой обработ-
ки сигналов (ЦОС), рост сложности задач, реша-
емых системами ЦОС, приводит к переходу от 
одномерной Фурье-обработки к двумерным ме-
тодам и алгоритмам. Отметим, что этот переход 
далеко не тривиален, поскольку является не 
только количественным, а, прежде всего, каче-
ственным переходом. Сказанное в полной мере 
относится и к теории, методам и алгоритмам 
определения огибающих двумерных дискретных 
финитных действительных (ДФД) сигналов на 
основе дискретных преобразований Фурье. 

Рассмотрим кратко основные методы и алго-
ритмы цифровой Фурье-обработки двумерных 
финитных сигналов, а также основные этапы 
развития теоретических основ этого вида обра-
ботки. Теоретические и практические вопросы 
Фурье-обработки двумерных дискретных финит-
ных комплексных (2D ДФК) и действительных  
(2D ДФД) сигналов рассмотрены в работах [7-10]. 
В работе [6] изложены основы теории цифровой 
обработки 2D ДФК и 2D ДФД сигналов в базисах 
Фурье с варьируемыми параметрами. Двумерное 
дискретное преобразование Фурье (2D ДПФ) с 
варьируемыми параметрами (2D ДПФ-ВП), пред-
ложенное в работе [6], является обобщением класси-
ческого 2D ДПФ и позволяет путем варьирования пара- метров «управлять» свойствами 2D ДПФ-ВП. 
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Анализ теории 2D Фурье-обработки 2D ДФК и 2D 
ДФД сигналов показал, что она (теория) базируется на 
следующих аксиоматических положениях [2, 5-6, 15-18]: 

Определение 2D ДФК и 2D ДФД сигналов на конеч-
ной двумерной опорной области 

1 2
,N NSA   которая трак-

туется как двумерный фундаментальный период 

1 2N NSA   (2D период)1. 2D период, в свою очередь, опре-

деляется горизонтальным и вертикальным периодами. 
Определение сдвига двумерного дискретного сигна-

ла в виде циклического сдвига, осуществляемого путем 
циклических перестановок его отсчетов на конечной 
двумерной опорной области 

1 2
.N NSA   

Определение полной 2D базисной системы, состоя-
щей из двумерных дискретных экспоненциальных функ-
ций (2D базисной системы 2D ДЭФ): 

1 1 2 2

1 2 21
, 1 1 2 2( , , , ) k n k n

N N NN
def k n k n W W  = (1) 

= 1 1 1 1
1 1

2 2cos sink n j k n
N N
  

  
 

1 1 1 1
2 2

2 2cos sink n j k n
N N
  

  
 

 

1 1 2 2 1 1 2 2
1 2 1 2

2 2 2 2cos sin ;k n k n j k n k n
N N N N
      

      
   

 

где 1 1

1 1 1
1

2exp ;k n
NW j k n

N
 

  
 

 2 2

2 2 2
2

2exp ;k n
NW j k n

N
 

  
 

 

1 2,k k  – пространственные частоты, 1 10, 1,n N   

2 20, 1;n N   1 10,( 1),k N   2 20,( 1).k N   

В работах [5-6, 15, 19-27] на основе проведенного 
системного анализа свойств унитарного преобразова-
ния2 2D ДПФ – теоретической основы Фурье-обработки 
2D ДФК и 2D ДФД сигналов, эффективность и результа-
тивность которого доказана временем, сделаны следу-
ющие важные выводы: 

2D ДПФ можно интерпретировать как двумерный 
дискретный ряд Фурье, свойства которого во многом 
определяют свойства 2D ДПФ. 

Свойства 2D ДПФ математически точны и не могут 
рассматриваться как аппроксимация свойств непрерыв-
ного преобразования Фурье (НПФ). 

Ядра преобразования 2D ДПФ симметричны и раз-
делимы (сепарабельны); 

2D ДПФ может быть реализовано быстрыми алго-
ритмами.  

Оценки, получаемые помощью 2D ДПФ, структурно 
устойчивы (робастны). 
                                                   
 
 
1 Опорная область 

1 2N NSA   (2D период) – это диапазон значений 

переменных 1n  и 2 ,n  для которого двумерная последовательность 

1 2( , )x n n  отлична от нуля. Более подробно понятие опорной обла-
сти будет рассмотрено далее. 
2 Линейное преобразование является унитарным преобразовани-
ем – если его оператор обратим, а его ядро удовлетворяет условиям 
ортогональности. 

2D ДПФ в алгебраической форме задается следую-
щим соотношением: 

1 2
1 1 2 2

1 21 2
1 2

1 1

1 2 1 2,
0 01 2

1( , ) ( , ) ;
N N

k n k n
N NN N

n n
S k k x n n W W

N N

 

 

 
    (2) 

где 1 10,( 1),k N   2 20,( 1)k N   – пространственные 

частоты; ),( 21 nnx  – 2D ДФК или 2D ДФД сигнал, 

1 10, 1,n N   2 20, 1;n N   
1 2, 1 2( , )N NS k k  – коэффициен-

ты (бины) 2D ДПФ (векторный 2D пространственно-
частотный спектр 2D ДФК или 2D ДФД сигнала 1 2( , )x n n ). 

Учитывая свойство сепарабельности ядер 2D ДПФ, 
алгебраическая форма 2D ДПФ может быть представле-
на в виде: 

1 2
1 1 2 2

1 21 2
1 2

1 1

1 2 1 2,
0 01 2

1 1( , ) ( , ) ;
N N

k n k n
N NN N

n n
S k k W x n n W

N N

 

 

 
  

 
   (3) 

или в виде: 
2 1

2 2 1 1

1 21 2
2 1

1 1

1 2 1 2,
0 02 1

1 1( , ) ( , ) .
N N

k n k n
N NN N

n n
S k k W x n n W

N N

 

 

 
  

 
   (4) 

С математической точки зрения 2D ДФК или 2D ДФД 
сигнал 1 2( , )x n n  – это двумерная последовательность 
конечной длины, являющаяся множеством комплексных 
или действительных чисел, определенных для упорядо-
ченных пар целых чисел 1n  и 2 ,n  при 1 10 1;n N    

2 20 1n N    [7]. 2D ДФК и 2D ДФД сигнал 1 2( , )x n n  на 
прямоугольной пространственной опорной плоскости 

1 2
,N NSA   при 1 10 1n N    и 2 20 1,n N    может быть 

представлен в виде матрицы: 

1 2N N X  (5) 

22

2

2

1 1 1 1 2

1

0 1 . . ( 1)
0 (0,0) (0,1) . . (0, 1)
1 (1,0) (1,1) . . (1, 1)
. . . . . .
. . . . . .

( 1) ( 1,0) ( 1,1) . . ( 1, 1)

nN
x x x N
x x x N

N x N x N x N N
n


 

  
 
 
 
      

 
С учетом свойства сепарабельности ядер 2D ДПФ 

возможна матричная форма 2D ДПФ [6, 15-16]: 

1 2 1 1 1 2 2 2

(2) (1)

1 2

1
N N N N N N N NN N     


S F X F ; (6) 

где 
1 2,N NS  – двумерный векторный пространственно-

частотный спектр на опорной плоскости 
1 2N NSA   

1 2N N S  (7) 

22

2

2

1 1 1 1 2

1

0 1 . . ( 1)
0 (0,0) (0,1) . . (0, 1)
1 (1,0) (1,1) . . (1, 1)

;. . . . . .
. . . . . .

( 1) ( 1,0) ( 1,1) . . ( 1, 1)

kN
S S S N
S S S N

N S N S N S N N
k


 

  
 
 
 
      

; 
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2 2

(1)
N N F  (8) 

2

2 2 2

2

2 2 2

2 2 2 2

2 2 2

2 2
0 ( 1)0 0 0 1

1 ( 1)1 0 11

( 1) 0 ( 1) 1 ( 1) ( 1)
2

2

0 1 . . ( 1)
. .0
. .1

. . . . . .

. . . . . .
( 1) . .

N
N N N

N
N N N

N N N N
N N N

N k
W W W

W W W

N W W W
n

  

  

      



 
 
 
 
 
 
   

; 

1 1

(2)
N N F  (9) 

2

1 1 1

2

1 1 1

1 1 1 1

1 1 1

1 1
0 ( 1)0 0 0 1

1 ( 1)1 0 11

( 1) 0 ( 1) 1 ( 1) ( 1)
1

1

0 1 . . ( 1)
. .0
. .1

. . . . . .

. . . . . .
( 1) . .

N
N N N

N
N N N

N N N N
N N N

N n
W W W

W W W

N W W W
k

  

  

      



 
 
 
 
 
 
   

. 

Как и в случае алгебраической формы 2D ДПФ (3, 4), 
возможны два варианта выполнения действий в соот-
ношении (6): 

1 2 1 1 1 2 2 2

(2) (1)

1 2

1 1 ;N N N N N N N NN N       S F X F  (10) 

или 

1 2 1 1 1 2 2 2

(2) (1)

1 2

1 1 .N N N N N N N NF
N N   

 
   
 

S F X  (11) 

Замечание 1. Как известно 2D ДПФ связывает 
между собой две области: пространственную об-
ласть и пространственно-частотную область. Для 
2D ДПФ существует взаимосвязь результатов опе-
раций периодизации и дискретизации сигналов, прово-
димых в той или иной области. Процесс периодизации 
2D сигнала в одной области приводит к дискретиза-
ции 2D спектра в другой области. И наоборот, про-
цесс дискретизации 2D спектра в одной области при-
водит к периодизации 2D сигнала в другой области. 
Таким образом, 2D ДПФ периодично и дискретно как  
в пространственной области, так и пространствен-
но – частотной области. 

Задача данной работы – обобщение дискретного пре-
образования Гильберта финитных действительных сигна-
лов на двумерный случай, разработка теории, методов и 
алгоритмов определения огибающих двумерных дискрет-
ных финитных действительных сигналов на базе преобра-
зований Фурье с варьируемыми параметрами, проведение 
математического моделирования с целью подтверждения 
полученных в работе теоретических результатов. 

Двумерное дискретное преобразование Фурье  
с варьируемыми параметрами 

Двумерное дискретное преобразование Фурье (2D 
ДПФ) с варьируемыми параметрами (2D ДПФ-ВП), 
предложенное в работе [6], является обобщением клас-
сического 2D ДПФ и позволяет путем варьирования па-
раметров «управлять» свойствами 2D ДПФ-ВП. Базис-
ная система 2D ДПФ-ВП состоит из двумерных дискрет-

ных экспоненциальных функций с варьируемыми пара-
метрами (2D ДЭФ-ВП): 

1 1 1 2 2 2

1 2 21

( ) ( )
, 1 1 1 2 2 2( , , , , , ) k n k n

N N NN
def k n k n W W      = (12) 

= 1 1 1 1 1 1
1 1

2 2cos ( ) sin ( )k n j k n
N N
 

 
 

     
 

2 1 1 2 2
2 2

2 2cos ( ) sin ( )k n j k n
N N
 

 
 

     
 

 

1 1 1 2 2 2
1 2

2 2cos ( ) ( )k n k n
N N
 

 
 

     
 

 

1 1 1 2 2 2
1 2

2 2sin ( ) ( ) ;j k n k n
N N
 

 
 

    
 

 

где 1 1 1

1

( )
1 1 1

1

2exp ( ) ;k n
NW j k n

N
 

  
   

 
 2 2 2

2

( )k n
NW    

2 2 2
2

2exp ( ) ;j k n
N



 

   
 

 

1 2,k k  – пространственные частоты, 1 10, 1,n N 

2 20, 1;n N   1 10,( 1),k N   2 20,( 1);k N   1 2,   – ва-
рьируемые параметры. 

2D ДПФ-ВП в алгебраической форме задается сле-
дующим соотношением: 

1 2

1 2
1 1 1 2 2 2

1 2

1 2

1 2 1 2,

1 1
( ) ( )

1 2
0 01 2

( , , , )

1 ( , ) .

N N

N N
k n k n

N N
n n

S k k

x n n W W
N N

 

 
 

   

 



 
  

 (13) 

Учитывая свойство сепарабельности ядер 2D ДПФ-
ВП, алгебраическая форма 2D ДПФ-ВП может быть 
представлена в виде: 

1 2

1 2
1 1 1 2 2 2

1 2

1 2

1 2 1 2,

1 1
( ) ( )

1 2
0 01 2

( , , , )

1 1 ( , ) ,

N N

N N
k n k n

N N
n n

S k k

W x n n W
N N

 

 

 
  

 



 
  

 
 

 (14) 

или в виде: 

1 2

2 1
2 2 2 1 1 1

1 2

2 1

1 2 1 2,

1 1
( ) ( )

1 2
0 02 1

( , , , )

1 1 ( , ) .

N N

N N
k n k n

N N
n n

S k k

W x n n W
N N

 

 

 
   

 



 
  

 
 

 (15) 

Отметим, что значениях параметров 1 0   и 2 0   
2D ДПФ-ВП переходит в классическое 2D ДПФ. 

С учетом свойства сепарабельности ядер 2D ДПФ-
ВП матричная форма 2D ДПФ-ВП может быть представ-
лена в виде: 

1 2 1 2 1 1 1 1 2 2 2 2

(2) (1)
, , , ,

1 2

1
N N N N N N N NN N        


S F X F ; где (16) 

1 1 1

(2)
,N N  F  

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1 1 1 1

1 1 1

1 1
(0 ) 0 (0 ) 1 (0 ) ( 1)

(1 ) 0 (1 ) 1 (1 ) ( 1)

( 1 ) 0 ( 1 ) 1 ( 1 ) ( 1)
1

1

0 1 . . ( 1)
. .0
. .1

. . . . . .

. . . . . .
( 1) . .

N
N N N

N
N N N

N N N N
N N N

N n
W W W

W W W

N W W W
k

  

  

  

      

      

         



 
 
 
 
 
 
   

; 



 

 
 
6 

2 2 2

(1)
,N N  F  

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

2 2 22 2 2 2

2 2 2

2 2
0 (0 ) 0 (1 ) 0 ( 1 )

1 (0 ) 1 (1 ) 1 ( 1 )

( 1) ( 1 )( 1) (0 ) ( 1) (1 )
2

2

0 1 . . ( 1)
. .0
. .1

. . . . . .

. . . . . .
( 1) . .

N
N N r N r

N
N N N

N NN N
N N N

N k
W W W

W W W

N W W W
n

  

  

 

      

      

        



 
 
 
 
 
 
   

. 

Аналогично выражениям (14) и (15) возможны две 
последовательности выполнения соответствующих 
матричных умножений: 

1 2 1 2 1 1 1 1 2 2 2 2

(2) (1)
, , , ,

1 2

1 1 ;N N N N N N N NN N          S F X F  (17) 

или 

1 2 1 2 1 1 1 1 2 2 2 2

(2) (1)
, , , ,

1 2

1 1 .N N N N N N N NN N      

 
   
 

S F X F  (18) 

Двумерное дискретное преобразование Гильберта 
двумерных дискретных финитных  
действительных сигналов 

Существует два равноправных вида временного 
описания одномерных дискретных финитных действи-
тельных сигналов (1D ДФД сигналов) [1, 2, 11, 12, 13]: 

– описание 1D ДФД сигналов посредством мгновен-
ных параметров: 

 ( ) ( ) cos ( )x n A n n   ; (19) 

где ( )A n  – мгновенная амплитуда дискретного сигнала 

( );x n  ( )n  – полная фаза дискретного сигнала ( ).x n  

– описание 1D ДФД сигналов посредством спек-
тральных составляющих сигнала3: 

( ) cos ( 2 );m m m
m

x n A f n    (20) 

где mA  – амплитуда m  гармонической компоненты сиг-

нала ( );x n  mf  – частота m  гармонической компоненты 

сигнала ( );x n  m  – начальная фаза m  гармонической 

компоненты сигнала ( ).x n  

Представление 1D ДФД сигнала в виде некоторого 
комплексного сигнала:  

( ) ( ) ( );y n x n jx n   0, 1,n N   (21) 
(если определить некоторый оператор ,  преобразу-
ющий ( )x n  в ( )),x n  позволяет однозначно определить 

мгновенную амплитуду ( )A n  (огибающую) и мгновен-

ную фазу ( )n  сигнала (21) согласно соотношений: 

2 2( ) ( ) ( );A n x n x n   
( )

( ) arctg .
( )

x n
n

x n
 

   
 

  (22) 

Однако, чтобы теория, созданная на основе пред-
                                                   
 
 
3 В работе [13] справедливо утверждается, что вплоть до середины 
30-х годов прошлого столетия теория радиосвязи развивалась (как 
это не покажется удивительным) без использования спектральных 
представлений сигналов. 

ставлении сигнала в виде (21) допускала понятную фи-
зическую интерпретацию, оператор  4 должен соответ-
ствовать определенным требованиям. 

В работах [2, 11, 12, 13] доказано, что единственным 
линейным оператором, удовлетворяющим перечислен-
ным в сноске 4 основным требованиям (а также ряду 
других [13]), является оператор Гильберта .  Выраже-
ние (21) и (22), в случае применения оператора Гиль-
берта,  преобразуется к виду: 

( ) ( ) ( );АСy n x n jx n   0, 1;n N   (23) 

2 2( ) ( ) ( );A n x n x n   
( )

( ) arctg ;
( )

x n
n

x n
 

   
 

 (24) 

где соотношение (23) задает одномерный дискретный 
аналитический (гильбертовский) сигнал5, а соотношение 
(24) задает гильбертовскую огибающую – ( ).A n   

Отметим существенный недостаток преобразования 
Гильберта. Данное преобразование является лишь 
асимптотически локальным преобразованием. 

Теоретические и практические вопросы одномерного 
дискретного преобразования Гильберта6 (1D ДПГ) одно-
мерных дискретных финитных действительных сигналов 
(1D ДФД сигналов) достаточно подробно рассмотрены в 
работах [2-5, 11-14]. Поэтому на вопросах 1D ДПГ будем 
останавливаться лишь по мере необходимости.  

Рассмотрим обобщение одномерного ДПГ на дву-
мерный случай. Заметим, что переход от 1D ДПГ к дву-
мерному дискретному преобразованию Гильберта (2D 
ДПГ) не тривиален, поскольку является не только коли-
чественным, а, прежде всего, качественным переходом. 
2D ДПГ позволяет сформировать из 2D ДФД 1 2( , ),x n n  

1 10, 1,n N   2 20, 1,n N   новый 2D ДФД сигнал 

1 2( , ),x n n  1 10, 1,n N   2 20, 1.n N   2D Фурье-спектр 

сигнала 1 2( , )x n n  сдвинут по фазе относительно 2D 

Фурье-спектра сигнала 1 2( , )x n n  на / 2  (на 900) на 
отрицательных двумерных частотах. 2D Фурье-спектр 
сигнала 1 2( , )x n n  сдвинут по фазе относительно 2D 

Фурье-спектра сигнала 1 2( , )x n n  на – / 2  (на – 900) на 
положительных двумерных частотах.  

2D ДФК сигнал 1 2( , ),АСy n n  является двумерным 
дискретным аналитическим (2D ДА (гильбертовским)) 

                                                   
 
 
4 Основные требования к оператору :  малые изменения сигнала 

( )x n  должны приводить к малым изменениям мгновенных парамет-
ров; мгновенная фаза и мгновенная частота сигнала ( )x n  не должны 
изменяться при изменении мощности сигнала ( )x n  при неизменной 
его форме; параметры гармонического сигнала должны соответство-
вать их классическим определениям. 
5  В отечественной литературе некоторые авторы  совершенно 
справедливо предпочитают называть аналитический сигнал (15) 
«гильбертовским сигналом» (см., например, работы [13, 18]). Дей-
ствительно, аналитический комплексный сигнал вовсе не обязательно 
должен быть гильбертовским [18]. Для того, чтобы  ДФК сигнал (15) 
являлся гильбертовским необходимо и достаточно, чтобы его спектр 
Фурье был равен нулю на отрицательных частотах. 
6 Давид Гильберт – великий немецкий математик (1862 – 1943), в 
честь которого названо это преобразование. 
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сигналом и определяется следующим соотношением: 

1 2 1 2 1 2( , ) ( , ) ( , );АСy n n x n n jx n n   1 10, 1,n N   

2 20, 1.n N   (25) 
Обобщение выражений (24) на 2D ДФД сигналы 

определяется соотношениями: 
2 2

1 2 1 2 1 2( , ) ( , ) ( , );A n n x n n x n n   

1 2
1 2

1 2

( , )( , ) arctg .
( , )

x n nn n
x n n

 
   

 
 (26) 

где 1 2( , )A n n  – огибающая 2D ДФД сигнала 1 2( , );x n n  

1 2( , )n n  – мгновенная фаза сигнала 1 2( , ).x n n  

Отметим, что переход в ЦОС от 2D ДФД сигналов к 
2D гильбертовским (аналитическим) сигналам, повыша-
ет как эффективность, так и результативность многих 
операций двумерной Фурье-обработки 2D ДФД сигна-
лов.  

2D Фурье-спектр 2D ДА сигнала 1 2( , )АСy n n  равен 
нулю на отрицательных двумерных пространственных 
частотах. Рассмотрим пример иллюстрирующий это 
свойство 2D Фурье-спектр 2D ДА сигнала 1 2( , ).АСy n n  В 
качестве 2D ДФД сигнала выберем 2D действительную 
косинусоиду: 

1 2 1 1 2 2
1 2

2 2( , ) cos ,x n n k n k n
N N
  

  
 

 1 10, 1,n N   

2 20, 1.n N   (27) 

с параметрами: 1 2;k   2 3;k   1 8;N   2 8.N    
Согласно определению 2D ДПГ 2D ДФД сигнал 

1 2( , )x n n  представляет собой действительную сину-
соиду: 

1 2 1 1 2 2
1 2

2 2( , ) sin ,x n n k n k n
N N
 



 
  

 
 1 10, 1,n N   

2 20, 1n N  . (28) 

с параметрами: 1 2;k   2 3;k   1 8;N   2 8.N    

В силу того, что 2D ДФД сигнал (27) является четной 
функцией: 

1 1 2 2
1 2

2 2cos ( )) ( )k n k n
N N
  

    
 

1 1 2 2
1 2

2 2cos k n k n
N N
  

 
 

; (29) 

а 2D ДФД сигнал (28) – нечетной функцией: 

1 1 2 2
1 2

2 2sin ( ) ( )k n k n
N N
  

    
 

1 1 2 2
1 2

2 2sin ;k n k n
N N
  

   
 

 (30) 

то их 2D спектры Фурье имеют соответственно чисто 
действительный и чисто мнимый характер.  

Таким образом, 2D спектр Фурье 
1 2 ,0,0N NS  двумерно-

го аналитического сигнала 1 2( , )АСy n n : 

1 2 1 2 1 2( , ) ( , ) ( , )АСy n n x n n jx n n  = 

1 1 2 2
1 2

2 2cos k n k n
N N
  

   
 

 

1 1 2 2
1 2

2 2sinj k n k n
N N
  

  
 

; (31) 

где 1 2;k   2 3;k   1 8;N   2 8;N    

на положительной двумерной частоте 1 2( , )k k  (2, 3) 
действителен и равен единице, а на других положитель-
ных и отрицательных двумерных частотах равен нулю 
(рис. 1). 

 
Рис. 1.  Двумерный спектр Фурье аналитического сигнала (27) 

На рис. 2 приведен 2D ДФД сигнал 1 2( , )x n n   

1 1 2 2
1 2

2 2cos ,k n k n
N N
  

  
 

 1 10, 1,n N   2 20, 1n N   с 

параметрами: 1 2;k   2 3;k   1 64;N   2 32N   и его 
огибающая 

 
a) 

 
б) 

Рис. 2. Двумерный дискретный финитный сигнал – а;  
его огибающая – б 

Теория, методы и алгоритмы определения 
огибающих двумерных дискретных финитных 
действительных сигналов на базе дискретных 
преобразований Фурье с варьируемыми 
параметрами 

Коэффициенты (бины) 2D ДПФ 2D ДФД сигналов 

1 2, 1 2( , )N NS k k  (2) обладают свойством комплексной со-
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пряженности (эрмитовой симметрии). Если изобразить 
комплексно-сопряженную симметрию комплексных чи-
сел условно в виде стрелок, то комплексно-
сопряженная симметрия бинов векторного 2D простран-
ственно-частотного спектра 2D ДФД сигнала 1 2( , )x n n
(табл. 5) может быть представлена в общем виде рис. 3. 

 
Рис. 3.  Комплексно-сопряженная симметрия  

(эрмитова симметрия) бинов 2D ДПФ 2D ДФД сигналов 

2D ДФД сигналы, в случае применения 2D ДПФ, об-
ладают еще одним свойством. Периодическое продол-
жение 2D ДФД сигнала в пространственной области 
остается действительным сигналом. Напомним, что 2D 
ДПФ-ВП (14, 15, 16) при значениях параметров 1 0   и 

2 0   тождественно классическому 2D ДПФ. 

Коэффициенты (бины) 2D ДПФ-ВП при значениях 
параметров 1 1/ 2   и 2 1/ 2   2D ДФД сигналов так-
же обладают свойством комплексной сопряженности 
(эрмитовой симметрии). Комплексно-сопряженная сим-
метрия бинов 2D ДПФ-ВП при значениях параметров 

1 1/ 2   и 2 1/ 2   2D 2D ДФД сигнала 1 2( , )x n n (таб-
лица 5), представлена в общем виде рис. 4. 

 
Рис. 4.  Эрмитова симметрия коэффициентов  
двумерного дискретного преобразования Фурье  

с варьируемыми параметрами 1 2

21

,
,1/ 2, 1/ 2

k k
N NS  

2D ДФД сигналы, в случае применения 2D ДПФ-ВП 
при значениях параметров 1 1/ 2   и 2 1/ 2,   обла-
дают, как и в случае применения 2D ДПФ, следующим 
свойством. Периодическое продолжение 2D ДФД сигна-
ла в пространственной области является действитель-
ным сигналом. 

Существует два основных подхода к формированию 
одномерного преобразования Гильберта: цифровая 

фильтрация (осуществляемая БИХ-фильтрами7 и КИХ-
фильтрами8) и спектральный анализ на основе ДПФ.  

Анализ достоинств и недостатков определения оги-
бающих 1D ДФД сигналов на базе цифровой фильтра-
ции достаточно подробно дан в работах [4, 5, 14, 17, 29-
31]. Поэтому на данных методах формирования 1D ДПГ 
подобно останавливаться не будем. Отметим лишь ос-
новной вывод из указанного выше анализа. При реше-
нии задачи формирования 1D ДПГ эффективность и 
результативность методов цифровой фильтрации, как 
правило, ниже методов спектрального анализа на осно-
ве ДПФ. 

Идея определения огибающих 2D ДФД на базе 2D 
ДПФ или на базе 2D ДПФ-П при значении параметров 

1 1/ 2   и 2 1/ 2   может показаться простой. Но сле-
дует подчеркнуть, что это может показаться только по-
сле того, как на нее (на идею) указали. 

Идея определения огибающих 2D ДФД сигналов на 
базе 2D ДПФ или на базе 2D ДПФ-ВП при значении па-
раметров 1 1/ 2   и 2 1/ 2   заключается в следую-
щем. 

2D ДПФ и 2D ДПФ-ВП при значении параметров 

1 1/ 2   и 2 1/ 2   2D ДФД сигналов обладают эрми-
товой симметрией (рис. 3, рис. 4). Обнуляя соответству-
ющие пространственно-частотные спектры на отрица-
тельных пространственных частотах, мы получаем про-
странственно-частотные спектры соответствующих 2D 
ДА сигналов (25). Реализуя обратное 2D ДПФ или об-
ратное 2D ДПФ-ВП при значении параметров 1 1/ 2   и 

2 1/ 2   соответствующих спектров 2D ДА сигналов, мы 
получаем соответствующие 2D ДА сигналы (25) в про-
странственной области. На действительной части соот-
ветствующего 2D ДА сигнала – 1 2( , )АСy n n  получим со-

ответствующий исходный 2D ДФД сигнал – 1 2( , ),x n n  а 
на мнимой части соответствующего 2D ДА сигнала – 

1 2( , ),АСy n n  соотвествующий сигнал 2D ДПГ – 1 2( , )x n n  
(25). И наконец, согласно выражению (26), вычисляем 

1 2( , )A n n  – огибающую 2D ДФД сигнала 1 2( , )x n n  в соот-
ветствующем базисе: 2D ДЭФ или 2D ДЭФ-ВП. 

На рис. 5 и 6 приведены алгоритмы определения 2D 
ДА сигналов на основе 2D ДПФ и 2D ДПФ-ВП соответ-
ственно. 

Алгоритмами определения ДПГ на основе 2D ДПФ 
или 2D ДПФ-ВП при значении параметров 1 1/ 2   и 

2 1/ 2,   возможно получение различных видов гиль-
бертовских (аналитических) сигналов (см. сноску 4). Вы-
бор двумерного дискретного преобразования Фурье 
(классического или с варьируемыми параметрам) позво-
ляет генерировать, по крайней мере, два вида двумер-
ных гильбертовских (аналитических) сигналов. 

 

                                                   
 
 
7 БИХ-фильтр – цифровой фильтр с импульсной характеристикой 
бесконечной длины. 
8 КИХ-фильтр – цифровой фильтр с импульсной характеристикой 
конечной длины. 
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Рис. 5. Алгоритм определения двумерного дискретного аналитического сигнала на основе 2D ДПФ  

 
а) 

 
б) 

Рис. 6.  Два алгоритма определения двумерного дискретного аналитического сигнала  
на основе 2D ДПФ-ВП при значениях параметров 1 1/ 2   и 2 1 / 2   

Вид 1 двумерного дискретного гильбертовского 
сигнала.  

Двумерный дискретный гильбертовский сигнал (2D 
ДГС) первого вида получается алгоритмом определения 
2D ДПГ области на основе 2D ДПФ: 

, 2 1 2 1 2 ,2 1 2( , ) ( , ) ( , )ГС D ДПФ D ДПФx n n x n n jx n n  ; (32) 

где , 2 1 2( , )ГС D ДПФx n n  – 2D ДГС, полученный алгоритмом 

определения ДПГ в пространственно-частотной области 
на основе 2D ДПФ; , 2 1 2( , )D ДПФx n n  – новый 2D ДФД 

сигнал (2D ДПГ сигнала 1 2( , )),x n n  Фурье-спектр которо-
го сдвинут по фазе относительно Фурье-спектра 

1 2( , )x n n  на / 2 . 

Вид 2 двумерного дискретного гильбертовского 
сигнала.  

Двумерный дискретный гильбертовский сигнал (2D 
ДГС) второго вида получается алгоритмом определения 
2D ДПГ на основе 2D ДПФ-ВП, при значении парамет-
ров 1 1/ 2   и 2 1/ 2  : 

, 2 , 1/2, 1/2 1 2

1 2 ,2 ,1/2, 1/2 1 2

( , )

( , ) ( , );
ГС D ДПФ

D ДПФ

x n n

x n n jx n n



 
 (33) 

где , 2 , 1/ 2, 1/2 1 2( , )ГС D ДПФx n n  – 2D ДГС, полученный алго-

ритмом определения ДПГ в пространственно-частотной 
области на основе 2D ДПФ-ВП, при значении парамет-
ров 1 1/ 2   и 2 1/ 2;   , 2 ,1/ 2, 1/ 2 1 2( , )D ДПФx n n  – новый 

2D ДФД сигнал (2D ДПГ сигнала 1 2( , )),x n n  Фурье-спектр 
которого сдвинут по фазе относительно Фурье-спектра 

1 2( , )x n n  на / 2 . 

Для генерации огибающих двух 2D ДФД тестовых 
сигналов выберем два произведения двух двумерных 
косинусоид: 

Первый тестовый 2D ДФД сигнал: 

1 2 1 1 2 2
2 2( , ) cosx n n m n m n
N N
     

 

3 1 4 2
2 2cos ;m n m n
N N
   

 
 (34) 

где 1 2, 0, 1;n n N   1 3 2 464; 1; 8; 0.N m m m m      

Второй тестовый 2D ДФД сигнал: 

1 2 1 1 2 2
2 2( , ) cos ( 1/ 2)x n n m n m n
N N
  

    
 

3 1 4 2
2 2cos ;m n m n
N N
   

 
 (35) 



 

 
 
10 

 
а) 

 
б) 

Рис. 7. Огибающие первого – а, второго – б, тестовых 2D ДФД сигналов, полученные на основе первого вида 2D ДГС 

 
а) 

 
б) 

Рис. 8.  Огибающие первого – а, второго – б, тестовых 2D ДФД сигналов, полученные на основе второго вида 2D ДГС 

где 1 2, 0, 1;n n N   1 3 2 464; 1; 8; 0.N m m m m      

На рис. 7 приведены огибающие двух тестовых 2D 
ДФД сигналов, полученные на основе первого вида 2D 
ДГС. 

На рис. 8 приведены огибающие двух тестовых 2D 
ДФД сигналов, полученные на основе второго вида 2D 
ДГС 

 

Анализ теоретических огибающих и огибающих, по-
лученных экспериментальным путем позволяет сделать 
следующие выводы. 

1. Согласованность базисов применяемого 2D ДПФ-
ВП со структурой 2D исследуемых ДФД сигналов крайне 
важна, поскольку позволяет получить меньшие абсо-
лютные и относительные погрешности определения 
огибающих, вплоть до нулевых. В чем легко убедиться, 
сравнив соответственно рис. 7 а с 8 а, 7 б с 8 б. 

2. Огибающие различных 2D ДФД сигналов имеют (в 
зависимости от вида 2D ДГС) существенные различия 
лишь на концах интервала определения последних. 
Заключение 

1. В статье проведено обобщение дискретного пре-
образования Гильберта финитных двумерных действи-
тельных сигналов на базе двумерного классического 
преобразований Фурье. 

2. Разработана теория, методы и алгоритмы опреде-
ления огибающих двумерных дискретных финитных 
двумерных действительных сигналов на базе преобра-
зований Фурье с варьируемыми параметрами. 

3. Из методов определения огибающих двумерных 
дискретных финитных действительных сигналов (реали-
зация дискретных преобразователей Гильберта в про-
странственной области двумерными КИХ и БИХ-
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фильтрациями, комплексной фильтрацией), методы, 
основанные на классическом 2D ДПФ и ДПФ-ВП при 
параметрах 1/2, 1/2, являются самыми точными. 

4. Теоретические результаты, полученные в статье, 
подтверждены математическим моделированием, про-
иллюстрированы на двух тестовых 2D ДВД сигналах 
двух видов 2D ДГС. 

5. Не принятие во внимание при цифровой Фурье-
обработке вида используемой огибающей может приво-
дить к потере информации о свойствах и состояниях 
исследуемых объектов, явлений и процессов, а также 
досадным ошибкам. 
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