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Предлагается подробное описание алгоритмов реализации ме-
тода перестановочного декодирования двоичных избыточных кодов в 
условиях, когда по объективным причинам не все перестановки сим-
волов после их ранжирования в пределах принятой приемником ком-
бинации обеспечивают результативный переход к эквивалентному 
аналогу из-за вырожденности переставленной матрицы. Исследова-
ния показали, что это явление существенно снижает эффектив-
ность избыточного кодирования по мере роста длины кодовых век-
торов, когда общий объем результативных перестановок нумера-
торов неуклонно выравнивается с объемом нерезультативных пере-
становок нумераторов. Используя свойство вырожденности   неко-
торого подмножества переставленных матриц, было доказано, что 
варианты результативных и нерезультативных перестановок ну-
мераторов не пересекаются. Это открывает возможность для 
большинства последних за счет целенаправленной замены всего 
одного нумератора перевести их в множество результативных пе-
рестановок. При этом в процедуре декодирования однозначно исклю-
чается метод проб и ошибок. Было предложено указывать в когни-
тивной карте в явном виде априори неблагоприятные исходы кор-
рекции нерезультативной перестановки. Это позволило сократить 
объем таких перестановок с 40 % ... 50 % примерно до 10 % от обще-
го числа подобных неудачных исходов. Вместе с этим, в известных 
работах никак не оценивались объемы памяти когнитивных карт, 
которые решающим образом могут повлиять на конструктивные и 
временные параметры декодера. 
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Введение 

Подавляющее большинство работ, связан-
ных с описанием метода перестановочного де-
кодирования (ПД) двоичных избыточных кодов, 
устанавливают общие закономерности форми-
рования множества записей когнитивных карт 
(КК) результативных перестановок нумераторов 
(РПН) и не пересекающего с первым множества 
нерезультативных перестановок нумераторов 
(НПН) [1-6]. С математической точки зрения в 
ПД результативность перестановки определя-
ется однозначной возможностью формирова-
ния эквивалентного кода (ЭК) по последова-
тельности надежных нумераторов для принятой 
приемником символов комбинации основного 
кода. Мерой надежности в такой системе вы-
ступают мягкие решения символов (МРС) в це-
лочисленном или действительном формате. 
При этом с учетом различных манипуляций, вы-
полняемых над оценками в виде их ранжирова-
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ния, перестановок и определения интервальных оценок 
предпочтение отдается целочисленному формату МРС. 
Признаком принадлежности к множеству РПН является 
невырожденность переставленной информационной 
части порождающей матрицы основного кода. Напро-
тив, вырожденность такой матрицы свидетельствует о 
принадлежности перестановки к множеству НПН. Ука-
занные признаки являются взаимоисключающими, что 
определяет суть и научную новизну описанных в данной 
работе алгоритмов [7, 8].  

Анализ известных работ предметной области пока-
зывает, что их содержание не затрагивает такой важный 
элемент, который определяет содержание первичной 
информации, поступающей на вход КК для организации 
решения альтернативной задачи принадлежности теку-
щей перестановки нумераторов к множествам РПН или 
НПН. При этом в случае принадлежности оперативно 
обрабатываемой перестановки к множеству РПН требу-
ется процедура поиска обратной матрицы для пере-
ставленной информационной части порождающей мат-
рицы ЭК. В противном случае выполняется коррекция 
обрабатываемой перестановки нумераторов для ее вы-
соковероятного приведения к множеству РПН [9]. В ра-
боте дается подробное описание такого перехода. 

Известно, что попытка разместить в КК декодера все 
возможные перестановки нумераторов информацион-
ной части кодового вектора с ростом его длины стано-
вится труднореализуемой задачей. Поэтому предлага-
ется использовать орбитальное представление всего 
пространства перестановок, что повышает оператив-
ность поиска ЭК и работы декодера в целом. При этом 
учитывается, что в каждой сборной орбите (СО) нахо-
дится несколько локальных (ЛО) орбит и для их отличия 
требуется вычислительный ресурс декодера [10]. Пред-
лагается оригинальный способ решения указанной за-
дачи, приводящий к компактной записи в списках КК 
всех необходимых данных о перестановках. 

Принцип формирования записей  
когнитивной карты РПН 

В любом случае в ходе сеанса связи при обработке 
данных в системе ПД, поступающих на вход приемника, 
формируется два кортежа данных, первый из них пред-
ставляет последовательность нумераторов наиболее 
надежных из зафиксированных разрядов, которые при-
нимаются за последовательность информационных 

символов будущего ЭК, обозначим его как [k]. Второй 
кортеж – это последовательность менее надежных сим-
волов, представляет набор, оставшийся после форми-
рования кортежа [k], нумераторов проверочных симво-
лов формируемой комбинации ЭК. Обозначим второй 
кортеж как [n-k]. Например, для кода (15, 5, 7) возможно 
получить. 
[1 2 3 4 13]  [5 6 7 8 9 10 11 12 14 15];   0. det k   (1) 

[10 11 12 6 7]  [15 1 2 9 13 14 5 8 3 4];   0. det k   (2) 

[11 5 2 1 7]  [8 12 6 3 9 10 13 14 15 4];   0. det k   (3) 

В выражении (1) последовательности нумераторов 
для [k] и для [n-k] представлены в лексикографическом 
формате. В ходе обработки реальной информации при 
наличии помех получить подобные последовательности 
маловероятно. Основными кортежами данных в системе 
ПД будут последовательности, которые представлены 
выражениями (2) и (3), но для обеспечения регулярности 
преобразований данных для кортежей из множества [k] 
неупорядоченные данные целесообразно представлять 
в виде (1), что потребует от декодера дополнительных 
временных и энергетических ресурсов. В этом случае 
упорядоченные данные являются для КК своеобразной 
хэш-таблицей, что в определенной степени компенсиру-
ет, указанные выше затратные ресурсы. 

Возникают альтернативные задачи: сравнения ре-
зультата поиска обратной матрицы конкретной упорядо-
ченной лексикографически перестановки за счет прямо-
го вычисления такой матрицы или получения такой мат-
рицы за счет использования хэш-функции и поиска тре-
буемой матрицы в КК РПН. Полученные результаты 
сравнения для двух кодов (15, 5, 7) и (15, 7, 5) приведе-
ны в табл. 1. 

Из табл. 1 следует, что увеличение кортежа [k] всего 
на два нумератора увеличивает время процедуры полу-
чения обратной матрицы примерно в 600 раз. Получен-
ный результат не позволяет найти явно выраженное 
граничное значение между двумя конкурирующими кон-
цепциями: осуществлять вычисление обратной матрицы 
или искать готовое решение в базе данных, внесенных в 
КК РПН. Дело в том, что с увеличением размерности 
кортежа [k] однозначно увеличивается список эталонных 
перестановок. При этом заполнение когнитивной карты 
осуществляется данными полученными априори с ис-
пользованием внешних вычислителей и не представля-
ется критичным в  смысле  сложности  реализации  деко- 

Таблица 1. Сравнительные данные по числу операций и времени для двух кодов БЧХ  
при тактовой частоте условного микроконтроллера 32 МГц 

№ 
п/п 

Наименование  
операции 

Код (15, 5, 7). Число операций  
и требуемое время (с) 

Код (15, 7, 5). Число операций  
и требуемое время (с) 

1 Формирование переставленной 
матрицы 5 71,57 10  7 72,19 10  

 2 Копирование переставленной 
матрицы 26 78,12 10  50 61,56 10  

3 Вычисление миноров и допол-
нений 4702 514,6 10   288220 39 10   

4 Вычисление присоединенной 
матрицы 4778 514,9 10   288361 39 10   

5 Получение обратной матрицы 
завершено 4803 515 10   288410 39 10   
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дера. Поиск необходимой для осуществления способа 
ПД перестановки может занять большее время, чем 
обычное вычисление обратной матрицы. В такой фор-
мальной модели возможны три события: 

– требуемая комбинация находится вначале списка 
и для ее поиска необходимо время ;начt  

– искомая комбинация находится в середине списка 
и время ее поиска составляет значение ;срt  

– комбинация находится в конце списка и необходи-
мое время ее поиска оценивается как .окt  

Прямое прохождение списка однозначно обеспечи-
вает соотношение .нач c okрt t t   Напрашивается при-

менение в процедуре поиска кластерного анализа, реа-
лизация которого преобразует приведенное неравен-
ство к равенству вида .okнач cр поискаt t t t    Однако для 
этого размерность кластеров должна быть равномер-
ной. Исследование показало, что в пространстве пере-
становок этого добиться невозможно. Состав кластера с 
номером j определяется множеством лексикографиче-
ски упорядоченных перестановок, для которых на пер-
вой позиции в кортеже [k] всегда будет находиться ну-
мератор с индексом j, как показано ниже. При этом все-
гда выполняется условие: 1 ≤ j ≤ (n – k + 1). Выражению 
(4) соответствует индекс j = 8. 
 
 

 .

8  9  1 0  1 2  1 3

8  9 1 2 1 3 1 4

8 1 1  1 2  1 3  1 4


 (4) 

В табл. 2 представлены размерности кластеров пе-
рестановок с определителем не равным нулю для ис-
следуемых в работе кодов. 

Таблица 2. Составы кластеров для двух кодов БЧХ  

Код (15, 5, 7) Код (15, 7, 5) 
Признак 
кластера 

Число эле-
ментов 

Признак  
кластера 

Число 
элементов 

1 616 1 1512 
2 440 2 872 
3 304 3 480 
4 201 4 219 
5 131 5 107 
6 80 6 35 
7 40 7 11 
8 21 8 3 
9 11 9 1 
10 3 Не формируется  
11 1 Не формируется  

Численным методом доказано, что кластерное пред-
ставление множества РНП неравномерное и не пред-
ставляет практического интереса из-за сложного учета 
тонкой структуры кластеров. Однако в работе [7] было 
показано, что все перестановки лексикографического 
формата, начинающиеся на единицу (кластер 1 в лю-
бом систематическом коде) являются образующими 
комбинациями орбит (ОКО) всего множества РПН. Кро-
ме этого, появляется возможность уменьшить кластер 1 
любого кода в k раз [7]. При этом потребуется некото-
рый вычислительный ресурс для нахождения парамет-
ров обрабатываемой перестановки. А в общем случае 

множества РПР для исследуемых кодов уменьшается в 
15 раз. Главным достоинством такого разбиения, кроме 
числа анализируемых перестановок, является равно-
мерное распределение ОКО по орбитам и в этом случае 
кластерный анализ становится продуктивным. Недостат-
ком является необходимость в тривиальном случае вы-
числять всю орбиту перестановок, что приводит к росту 
сложности вычислительного процесса. При этом за по-
казатель кластера необходимо брать второй нумератор 
любой перестановки первого кластера. 

Развитие алгоритма поиска обратной матрицы  
в системе РПН 

Вычисление обратной матрицы A-1 для сформиро-
ванной приемником перестановки pпр занимает цен-
тральное место в ПД, поскольку на основе этой матрицы 
в последующем формируется порождающая матрица 
эквивалентного систематического кода Gэкв. Пусть из-
вестно, что переставленная матрица Pпер, обрабатывае-
мой перестановки pпр, имеет определитель det ≠ 0. При 
этом определители возможных перестановок множества 
{Pпер} определяются априори и загружается в КК декоде-
ра или хранятся в системе внешней памяти. Поиск тре-
буемой перестановки осуществляется с использованием 
хэш-таблицы, содержащей кортежи [k] c det ≠ 0. По этой 
же таблице находится значение обратной матрицы 1

перА  

для переставленной матрицы Апер. При этом вычисление 
матриц 1

перА  осуществляется также априори и заносится 

в КК. Как вариант, содержание матриц 1
перА  может вы-

числяться непосредственно декодером. Описание алго-
ритма дается в вербальной форме. 

Шаг 1. Перестановка pпр приводится к лексикографи-
ческому формату Fлекс и в этом формате определяется 
система интервальных оценок Fинт, которая единствен-
ным образом отражает все подмножество комбинаций 
{ОКО} для данной орбиты. В работе [7] показано, что для 
любой орбиты из РПН в ней насчитывается k ОКО. Из 
них одна является образующей комбинацией сборной 
орбиты (ОКСО) и (k - 1) локальных орбит (ОКЛО).  

Шаг 2. Определяется перестановка, связанная с Fинт 
из первого шага. 

Шаг 3. На основе интервальных оценок формируется 
проверочная часть порождающей матрицы ЭК для 
ОКСО. Если обрабатываемая перестановка не принад-
лежит ОКСО на основе регулярной процедуры по соста-
ву интервальных оценок формируются одна из (k - 1) 
требуемых ОКЛО. 

Шаг 4. По значению правых нумераторов в разряд-
ной сетке оценивается порядковый номер искомой ком-
бинации в составе своей орбиты относительно ОКО.  

Шаг 5. В зависимости от размещение обрабатывае-
мой перестановки в составе ОКСО или ОКЛО отыскива-
ется порождающая часть эквивалентной порождающей 
матрицы ЭК. 

Пример: 

Шаг 1. Пусть pпр = [10 7 12 6 11], при этом [ ]  прp k  c 

 0 6 7 10 11 12 .интFdet F    лекс     1  3  1 1   
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Шаг 2. Первый нумератор является 1, тогда ОКО c 
учетом интF  1  3  1 1  представляется как [1…] далее 
[1 2… ] → [1 2 5…] → [1 2 5 6…] → [1 2 5 6 7].  

Шаг 3. Находят другие ОКО: [1 10 11 14 15] – Fинт = 9 
1 3 1; [1  2  11  12  15] – Fинт = 1 9 1 3; [1  2  3  12  13] – 
Fинт = 1 1 9 1; [1  4  5  6  15] – Fинт = 3 1 1 9. Заметно, что 
последовательность [1 2 5 6 7] среди ОКО имеет мини-
мальное значение в правом нумераторе, следователь-
но, это ОКО СО.  

Шаг 4. Искомая комбинация Fлекс = [6 7 10 11 12], а 
значение ОКСО [1 2 5 6 7], отсюда 12 – 7 = 5, т.е. поряд-
ковый номер цикла преобразования проверочной части 
порождающей матрицы будет равен 5. Принципиально 
это означает, что для получения порождающей матри-
цы искомой комбинации необходимо в исходной матри-
це ОКСО отсчитать пять столбцов справа и перенести 
их в левую часть матрицы, как показано в табл. 3. 

Таблица 3. Пример преобразования проверочной части  
порождающей матрицы ЭК 

H для  
ОКО СО [1 2 5 6 7] 

H для для комбинации 
Fлекс = [6 7 10 11 12] 

0  1  1  1  0  1  0  1  0  1 
1  1  0  1  1  1  0  0  1  1 
1  0  1  1  1  1  1  1  0  0 
0  1  0  1  1  0  1  1  1  0 
1  0  1  1  0  0  1  0  1  1 

7  6  15 14  9   8  10 12 13 11 

0  1  0  1  0  0  1  1  1  0 
0  0  1  1  1  1  1  0  1  1 
1  1  0  0  1  0  1  1  1  1 
1  1  1  0  0  1  0  0  1  1 
1  0  1  1  1  0  1  1  1  0 

8 10 12 13 11  7  6  15 14  9  
Отсюда следует, что все ОКЛО в КК РПН должны 

иметь метку с какого цикла перестановок матрицы H 
следует начинать отсчет для точного определения па-
раметров этой матрицы для конкретной перестановки 
pпр. При этом совершенно не важно представлять мат-
рицу H в лексикографической форме. Целесообразно 
представлять шаг 3 алгоритма в следующем формате: 

ОКО: [1 2 5 6 7] – 3 1 1 9 (0); [1 10 11 14 15] – 9 1 3 1 
(9); [1 2 11 12 15]  – 1 9 1 3 (10); [1 2 3 12 13] – 1 1 9 1 
(11); [1 4 5 6 15] – 3 1 1 9 (14). 

Круглые скобки указывают на номер позиции в сборной 
орбите, с которой следует отсчитывать очередное ОКО. 

Очевидно, что лексикографическая переставленная 
матрица некоторой перестановки из кортежа [k] может 
быть представлена ! 1 k   перестановками строк такой 
матрицы (исключается исходная единственно лексико-
графически упорядоченная перестановка). Технология 
получения произвольной перестановки из лексикогра-
фического образца не является сложной задачей, и ее 
реализация представляется табл. 4 для трех случаев. 
Все другие перестановки формируются путем соответ-
ствующего перемещения строк исходной матрицы.  

Особенности обработки данных когнитивной карты 
НПН достаточно подробно описаны работе [9], когда в 

ситуации равенства определителя det = 0 переставлен-
ной матрицы Pпер через систему интервальных оценок в 
КК НПН указывается ряд нумераторов, которые нецеле-
сообразно использовать для трансформации переста-
новки. В этом случае код (15, 5, 7) оказывается более 
продуктивным, чем код (15, 7, 5) за счет большего числа 
альтернативных вариантов. В работе [6] показано, что 
представленный прием позволяет существенно расши-
рить множество результативных перестановок после 
адаптивной целенаправленной коррекции исходной пе-
рестановки. 

Процедура поиска и исправления ошибок 

Работа устройства рассматривается на примере кода 
БЧХ (15, 5, 7) с порождающей матрицей G вида 

1 0 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 1 1 1 1 0 .
0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0 0 1 1

 
 
 
 
 
 
 
 

 (5) 

Столбцы матрицы G нумеруются для удобства от 1 
до 15 в терминах десятичной системы cсчисления слева 
направо в виде верхних индексов для символов жестких 
решений. Пусть источник информации передает инфор-
мационный вектор V(инф=) 10010 тогда в канал связи 
будет отправлен вектор избыточного кода 

100100011110101.кан инфV V G    
Пусть вектор ошибок Ve при передаче по каналу свя-

зи вектора Vкан имел вид Ve = 001110011000110. Тогда в 
ходе фиксации вектора приема Vпр = Vкан ⊕ Ve в блоке 
приема и последовательной выработки для каждого би-
та этого вектора мягких решений в блоке мягких реше-
ний формируется совместная последовательность жест-
ких решений символов и соответствующих им целочис-
ленных МРС. В результате в накопителе оценок фикси-
руется последовательность вида: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
мрс 5 5 3 2 4 6 6 4 5 7 7 7 5 6 6 .1  0 1  0 1    0  0  0  0 1   1  0  0 1 1 V   (6) 

Значения МРС в блоке мягких решений формируется 

по правилу max ,/(  )i BE Z     где   – интервал 

стирания; BE  – энергия сигнала, приходящаяся на один 

бит; iZ  – уровень принятого сигнала (модулируемого 

параметра); max  – фиксированная целочисленная оцен-
ка МРС с максимальным значением, как правило, опре-
деляемая конструктором декодера [5]. Целесообразно, 
например, назначит max 7,   0,95,   2.BE   По сути 
широкий интервал стирания задается в таком приемнике 
для формирования  углового  коэффициента в линейной 

Таблица 4. Технология получения произвольной перестановки из лексикографического образца  

Упорядоченная  
перестановка для A-1 

Произвольная  
перестановка 

Произвольная  
перестановка 

Произвольная  
перестановка 

[6  7  10  11  12] [7   6  10  11  12] [12  7  10  11  6] [6 10  7  12  11] 
1 0 1 0 1
1 0 0 1 1
1 1 1 0 0
0 1 1 1 0
0 1 0 1 1

 
 
 
 
 
 
 
 

  

6
7
10
11
12

 

1 0 0 1 1
1 0 1 1 1
1 1 1 0 0
0 1 1 1 0
0 1 0 1 1

 
 
 
 
 
 
 
 

  

7
6
10
11
12

 

0 1 0 1 1
1 0 0 1 1
1 1 1 0 0
0 1 1 1 0
0 0 1 0 1

 
 
 
 
 
 
 
 

  

12
7
10
11
6

 

0 1 0 1 1
1 0 0 1 1
1 1 1 0 0
0 1 1 1 0
0 1 1 0 1

 
 
 
 
 
 
 
 

  

6
10
7
12
11
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функции ( ).i iZ  Тогда вектор мрсV  для накопителя оце-

нок мог быть получен по результатам фиксации в блоке 
приема параметра ,iZ  как показано в табл. 5. 

Упорядоченный вектор имеет вид 
10 11 12 6 7 15 1 2 9 13 5 8 14 3 4

 7 7 7 6 6 6 5 5 5 5 4 4 4 3 21 1  0  0  0   1 1  0  0  0  1  0  1 1   0  .мрс упV   (7) 

В целях удобства зрительного восприятия последо-
вательностей векторов в ходе их преобразований они 
условно разбиваются на пятизначные группы. Для 
дальнейшей организованной обработки кортеж [k] (ин-
формационная часть) вектора  мрс упV  представляется в 
виде лексикографически упорядоченной последова-
тельности нумераторов: 
[6  7  10  11  12] и [15  1  2  9  13  5  8  14  3  4]. (8) 

Копия последовательности [k] поступает в систему 
интервальных оценок. В этом блоке для нумераторов 
 6  7 1 0 1 1 1 2,  формируется последовательность интер-
вальных оценок вида инт 1  3 1  1 ,V   как расстояния меж-
ду соседними нумераторами. Установлено, что любые 
ОКО в лексикографическом формате начинаются с ну-
мератора, равного единице [6]. Для наглядности пред-
ставим комбинации сборной орбиты в виде табл. 6. 

По этим параметрам в когнитивной карте РПН нахо-
дится структура обратной матрицы 1

6 12 ,A
  которая яв-

ляется ключевым эталоном для формирования любых 
перестановок из лексикографически упорядоченной 
последовательности нумераторов кортежа [k], в частно-
сти [6  7  10  11  12}, как было показано выше. 

1
6...12 6...12

1 0 0 1 1 1 0 1 0 1
1 1 0 1 0 1 0 0 1 1
0 1 1 0 1 1 1 1 0 0
1 0 1 0 1 0 1 1 1 0
0 1 1 1 0 0 1 0 1 1

А А

   
   
   
     
   
   
   
   

  

6
7
10
11
12

. 

Следует учесть, что упорядоченная последователь-
ность 6...12А  порождает (5! – 1) неупорядоченных после-
довательностей перестановок. При нахождении для 
каждой из них обратной матрицы нет необходимости 
вычислять собственно обратную матрицу традиционным 
способом с использованием системы алгебраических 
дополнений. Для конструирования таких матриц необхо-
димо сохранить в обратной матрице ту последователь-
ность строк, которая задана текущей выборкой. Напри-
мер, задана последовательность вида 7  12  6  11  10. 
Тогда получаем с использованием ключевой матрицы: 

1
7 12 6 1110

1 0 0 1 1
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0
1 1 1 0 0

S 

 
 
 
 
 
 
 
 

  

7
12
6
11
10

. 

Таким образом, когнитивная карта РПН должна хранить 
только образцы строк обратных матриц, а конструктор об-
ратных матриц собирает требуемую перестановку из тех 
записей, которые соответствуют текущему кортежу данных 
в лексикографически не упорядоченной форме отличной от 
эталона последовательностью строк. Следующим этапом 
обработки данных будет получение порождающей матри-
цы ЭК. Для этого целесообразно использовать уже полу-
ченную ранее последовательность (8) не самых надежных 
символов из кортежа [n-k]: 

10 11 12 6 7 15 1 2 9 13 5 8 14 3 4
пер 7 7 7 6 6 6 5 5 5 5 4 4 5 3 21 1  0  0  0    1 1  0  0  0    1  0 1 1   0  .V   (9) 

Следовательно, требуется использовать столбцы про-
верочной части порождающей матрицы основного кода  
в  переставленном  виде.  В результате  для после дова-
тельности столбцов из [n-k] вида [15 1  2  9  13  5  8  14  3  
4], поступающей из блока сортировки данных в блок эк-
вивалентного кода формируется образ проверочной ча-
сти порождающей матрицы ЭК с использованием дан-
ных из матрицы 1

10  11  12   6 7A . Получаем: 

Таблица 5. Оценка мягких решений символов в накопителе приемника 

№ символа 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
iZ  1,4 -1,4 0,8 -0,6 1,1 -1,7 -1,7 -1,1 -1,4 1,9 1,9 -1,9 -1,4 1,1 1,7 

i  5 5 3 2 4 6 6 4 5 7 7 7 5 4 6 
Таблица 6. Структура сборной орбиты с ОКСО 1  2  5  6  7 

Код БЧХ (15, 5, 7) Число циклов Интервальная оценка ОКО 
6 7 10 11 12     
7 8 11 12 13     
8 9 12 13 14     
9 10 13 14 15     
1 10 11 14 15 ОКО 2 Локальная 0 9  1  3  1 
1 2 11 12 15 ОКО 3 Локальная 0 1  9  1  3 
1 2 3 12 13 ОКО 4 Локальная 2 1  1  9  1 
2 3 4 13 14     
3 4 5 14 15     
1 4 5 6 15 ОКО 5 Локальная 0 3  1  1  9 
1 2 5 6 7 ОКО 1 Сборная 8 1  3  1  1 
2 3 6 7 8     
3 4 7 8 9     
4 5 8 9 10     
5 6 9 10 11     

Повтор цикла. 0det   РПН   
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15...4

1 1 0 0 0 0 1 1 0 0
0 0 1 1 1 0 1 1 0 0
1 0 0 1 0 0 1 1 1 0 .
0 0 0 1 1 0 0 1 0 1
1 0 0 0 1 1 0 1 0 0

H

 
 
 
 
 
 
 
 

 (10) 

После умножения 1
10  11  12  6 4 1 7 5...HA   получаем истин-

ную проверочную часть порождающей матрицы ЭК: 

0 1 1 0 1 0 1 1 1 0
1 0 1 1 0 0 0 1 1 1
1 0 1 0 1 1 1 1 0 1 .
1 1 0 1 1 1 1 1 1 0
0 1 0 1 0 1 0 1 0 1

ЭКH

 
 
 
 
 
 
 
 

 (11) 

В выражении (9) информационный кортеж [k] пред-
ставлялся для ЭК в виде вектора 1 1 0 0 0. Это означа-
ет, что безошибочный вариант проверочной части по-
рождающей матрицы ЭК (10) потребует обработки толь-
ко первых двух строк. В результате такой обработки 
будет получен вектор вида 

ЭКH 11  01 1    01  0 01 .V   (12) 

Сравнивая проверочные части выражений (9) и (12), 
получаем 
1 1 0 0 0 1 0 1 1 0
1 1 0 1 1 0 1 0 0 1
0 0 0 1 1 1 1 1 1 1
151 2 9 13 5 8 14 3 4

 (13) 

В выражении (13) в нижней строке выделены номера 
позиций, которые в результате мешающих факторов бы-
ли приняты приемником ошибочно. Это соответствует, 
указанному выше вектору e .V  Таким образом показана 
возможность ПД исправлять ошибки за пределами гра-
ницы Хэмминга. В работах [6, 7, 9-11] показано, что в об-
щем случае максимальное число исправляемых кодом 
ошибок при использовании алгоритма ПД равно [n-k]. 

Приведенный пример показывает, что не все воз-
можности кода по исправлению ошибок использованы. 
Делается это преднамеренно, поскольку в случае кон-
фигурации надежных символов из кортежа [k] не обес-
печивающих получения ЭК неиспользованные символы 
из кортежа [n-k] позволяют адаптивно трансформиро-
вать перестановку НПН в перестановку РПН. Для этого 
правый разряд (нумератор символа) из кортежа [k] за-
меняется на левый незадействованный символ из кор-
тежа [n-k]. Например, в табл. 7 показан вариант пере-
становки, попавшей в множество НПН. 

Таблица 7. Структура нумераторов ОКО  
локальных орбит из множества НПН 

Комбинация ОКО Разница соседних 
интервалов 

Запрещенные  
нумераторы 

1  2  3  4  6 1  1  2  2 8   9   12 
2  12  13  14  15 10  1  1  1 3   4   7 
1  3  13  14  15 2  10  1  1 ВСЕ 
1  2  4  14  15 1  2  10  1 6   7   10 
1  2  3  5  15 1  1  2  10 7   8   11 

Заменяя в первой сроке последовательность 1 2 3 4 
6 на последовательность 1 2 3 4 15, получаем переста-
новку из множества РПН. ЭК может быть получен. 

Заключение 

КК перестановочного декодера создаются за счет внешних 
вычислительных ресурсов. При этом общее множество резуль-
тативных и нерезультативных перестановок распадается на два 
непересекающихся подмножества РПН и НПН. С технической 
точки зрения это означает, что после приведения полученной 
перестановки к лексикографическому формату такая переста-
новка может одновременно обрабатываться в двух КК одно-
временно: и в карте результативных перестановок, и в карте 
нерезультативных перестановок. Отклик появится только на 
выходе одной карты. 

Между КК должна быть организована связь для упорядоче-
ния процесса реализации адаптивной целенаправленной кор-
рекции исходной перестановки, попавшей первоначально в 
множество НПН. 

Лексикографически организованная перестановка из мно-
жества РПН легко преобразуется в любую из (k – 1) перестано-
вок за счет коммутации строк лексикографической перестанов-
ки в текущую неупорядоченную перестановку.  

Из-за наличия верхних индексов у нумераторов символов 
нет необходимости применять в процедуре декодирования 
перестановочную матрицу.  

Установлено, что процедура обработки данных в картах РПН 
и НПН оказывается неравновесной по числу реализуемых функ-
ций. Поэтому возникает целесообразность выделить еще одну 
когнитивную карту, в которой решать вопрос по коррекции НПН. 

Литература 

1. Скляр Б. Цифровая связь. Теоретические основы и практическое 
применение. М.: Вильямс. 2003. 1104 с. 

2. Morelos-Zaragoza R. The Art of noise-tolerant coding. Methods, algo-
rithms, and applications. Per. from the English ed. Afanasiev V.B. M.: Tech-
nosphere. 2005. 320 p. 

3. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: «Мир», 
1976. 594 с. 

4. Аджемов А.С., Санников В.Г. Общая теория связи. Учебник для 
вузов. М.: Горячая линия-Телеком, 2018. 624 с. 

5. Гладких А.А., Овинников А.А., Тамразян Г.М. Математическая мо-
дель когнитивного перестановочного декодера. Цифровая обработка 
сигналов. 2019. № 1. С. 14-19. 

6. Гладких А.А., Овинников А.А., Пчелин Н.А., Брынза А.П. Переста-
новочное декодирование с системой адаптированных альтернативных 
решений. Цифровая обработка сигналов. 2023. № 4. С. 73-78. 

7. Ганин Д.В., Дамдам М.А.Я., Савкин А.Л. Перестановочное декоди-
рование в маломощных беспроводных сенсорных сетях. Автоматизация 
процессов управления. 2022. № 1 (68). С. 54-61. doi:10.35752/1991-2927_ 
2022_1_68_54. 

8. Фрид Э. Элементарное введение в абстрактную алгебру. Пер. с вен-
гер. Ю.А. Данилова. М.: Мир, 1979, 260 с. 

9. А.А. Брынза, А.А. Гладких, А.А. Ничунаев, А.Л. Савкин, П.Б. Лютвин-
ская Структура и взаимосвязь когнитивных показателей в системе пере-
становочного декодирования. Автоматизация процессов управления. 
2023. № 4 (74). С. 126-133. doi:10.35752/1991-2927_ 2023_4_126. 

10. Бабанов Н.Ю., Шахтанов С.В. Циклические свойства орбит пере-
становок когнитивной карты перестановочного декодера систем реально-
го времени. Проектирование и технология электронных средств. 2020. 
№4(62). С.85-92. 

11. Оценка статистических характеристик перестановочного декоде-
ра методом его программной реализации / А.Л.Х. Аттаби, А.А. Брынза, 
Д.В. Ганин, А.А. Ничунаев, А.В. Новоселов. Автоматизация процессов 
управления. 2023. № 2 (72). С. 91-98. doi:10.35752/1991-2927_ 2023_ 
2_72_91. 

 
 


