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Рассмотрены градиентные и ньютоновские алгоритмы 
адаптации цифровых полиномиальных фильтров (фильтров 
Вольтерра) во временной области. Приведены оценки границ 
изменения параметров адаптации, гарантирующие сходимость 
алгоритмов. Данные оценки выражаются через собственные 
числа корреляционной матрицы высших моментов входного сиг-
нала. Предложены способы ускорения сходимости алгоритмов 
адаптивной нелинейной фильтрации. 
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Gradient and Newtonian algorithms for adaptive digital polynomial filters (Volterra filters) in the time domain are considered. Esti-
mates of the limits for changing adaptation parameters are given, guaranteeing the convergence of the algorithms. These estimates 
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Введение  

Последние достижения в области цифровой об-
работки сигналов связаны с разработкой методов 
адаптивной нелинейной фильтрации [1-4], которые 
нашли применения в различных областях, таких как 
идентификация и управление в нелинейных системах 
[5], нелинейная адаптивная эхо-компенсация [6, 7], не-
линейное оценивание [8], фильтрация сигналов и изоб-
ражений [9]. Среди множества классов нелинейных 
фильтров широкое распространение получили цифро-
вые полиномиальные фильтры [9-11]. Данный класс 
нелинейных фильтров, называемых также фильтрами 
Вольтерра, представляет собой естественное обобще-
ние линейных фильтров [13]. Ввиду того, что полиноми-
альные фильтры сохраняют свойство линейности отно-
сительно своих коэффициентов, принципы построения 
алгоритмов адаптации данных фильтров во многом 
схожи с линейным случаем. В то же время имеется ряд 
особенностей, связанных с выбором параметров адап-
тации, касающихся различных нелинейных составляю-
щих фильтра. 

В настоящее время существует множество различных 
алгоритмов адаптивной обработки сигналов. Известны 
различные модификации метода наименьших квадратов, 
отличающиеся способом формирования целевой функ-
ции и направлением поиска [1-3, 12]. Дня всех адаптив-
ных алгоритмов характерно присутствие помех, искажа-
ющих истинное направление поиска. Данные помехи 
обусловлены погрешностями статистических оценок и 
приводят к тому, что алгоритм адаптации сходится лишь 
в некоторую окрестность оптимальной точки. В связи с 
этим при исследовании алгоритмов адаптации можно 
говорить лишь о сходимости в некотором статистическом 
смысле (с вероятностью, в среднем). 

Поэтому, одним из основных вопросов при разработ-
ке адаптивных алгоритмов фильтрации является выбор 
параметров алгоритма, обеспечивающих сходимость и 
достаточную скорость процесса адаптации. 

Векторное представление  
полиномиальных фильтров 

Цифровой полиномиальный фильтр М-го порядка оп-
ределяется отрезком дискретного ряда Вольтерра [13, 14] 
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где ( )my n  – составляющая реакции фильтра, характери-

зующая нелинейность m-го порядка; 1( , , )m mh i i  – не-

линейная импульсная характеристика (ядро) т-го по-
рядка. 

Многомерный полиномиальный фильтр (1) может 
быть охарактеризован 1ML   вектором коэффициентов  
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где отдельные блоки T
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членам различных порядков и содержат упорядоченные 
значения 1( , , ),m mh i i  соответствующие лишь уникаль-

ным комбинациям индексов 1, , .mi i  Можно показать, 
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где m
nС  – число сочетаний из п по т. 

Пусть вектор отсчетов входного сигнала 
[ ( ) ( 1)].T

n x n x n N  x   В соответствии с (4) сформи-
руем вектор произведений отсчетов входного сигнала 
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упорядоченных произведений 1( ) ( ),mx n i x n i    со-
ответствующих лишь уникальным комбинациям 

1( , , )mi i  индексов. 

Использование введенных векторных обозначений 
позволяет представить многомерный полиномиальный 
фильтр (1) в следующей простой векторной форме: 

( ) ,T
ny n  h χ      (6) 

линейной относительно вектора h, содержащего ML  
коэффициентов. 

Задача оптимальной полиномиальной фильтрации 

Вектор opth  оптимальных коэффициентов полино-
миального фильтра определяется путем минимизации 
среднеквадратической ошибки между выходным y(n) и 
заданным (опорным) ( )d n сигналами на выходе филь-
тра 

2M{ ( ) ( )}d n y n       (7) 
и сводится к решению матричного уравнения Винера-
Хопфа [15] 

,dχ χR h r     (8) 

где M{ }T
n nχR χ χ  – автокорреляционная матрица, а 

M{ ( ) }d nd nχr χ  – вектор взаимных корреляций. 

Ввиду линейности полиномиального фильтра отно-
сительно весовых коэффициентов решение (8) выгля-
дит так же, как и в линейном случае. Отличием является 
то, что матрицы χR  и dχr  определяются через корре-
ляции высших порядков. С учетом структуры (5) входно-
го вектора ,nχ  данные матрицы могут быть представ-
лены в блочном виде следующим образом: 
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где блоки ( ) ( )
, M{ }i j T

i j n nR x x  и ( )M{ ( ) }i
i nd nr x  являют-

ся, соответственно, матрицей автокорреляций и векто-
ром взаимных корреляций. Заметим, что в линейном 
случае данные матрицы состоят лишь из блоков 0,0 ,R  

0,1,R  1,0 ,R  1,1R  и 0 ,r  1.r  

На практике для вычисления среднеквадратической 
ошибки (7) используются реализации конечной дли-
тельности. Определим векторы d и у размером 1,L  
содержащие, соответственно, L отсчетов заданного и 
выходного сигналов фильтра. Тогда, вектор у реакции 
фильтра может быть представлен в матричной форме 

,y Xh    (10) 
где h – вектор (3) коэффициентов фильтра, а X – мат-
рица входного сигнала фильтра, определяемая соглас-

но (5) в следующем виде: 
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При конечном объеме выборки вместо (7) можно ис-
пользовать квадрат евклидовой нормы вектора ошибок 

2 ( ) ( )T T   ε ε ε d y d y . 

Как известно [15], минимум данной нормы определя-
ется решением системы нормальных уравнений вида 

T TX Xh X d    (12) 
и достигается в точке 

,opt
h X d    (13) 

где X  является обобщенной обратной (псевдообрат-
ной) матрицей для X. 

Если столбцы матрицы X линейно независимы, что 
бывает далеко не всегда, то псевдообратная матрица 
определяется выражением 

1( )T T X X X X . 

В частности, для квадратной матрицы 1. X X  При 

неполном ранге для определения X  можно воспользо-
ваться сингулярным представлением матрицы 

. X U V  Здесь U и V являются унитарными матрица-
ми со столбцами, равными собственным векторам, соот-
ветственно, матриц TXX  и ,TX X  а Λ  – диагональной 
матрицей вида 

0
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где 1diag( , ..., ),k D  а i  – отличные от нуля сингу-

лярные числа X. Псевдо-обратная матрица ,X  соот-

ветствующая матрице X ранга k, равна 
1 . X VD U  

В соответствии с (10) и (11) выходной вектор у фор-
мируется путем взвешенного суммирования компонент 

, 0, , ,i i My   обусловленных отдельными столбцами 
матрицы X. Первый столбец определяет постоянную 
составляющую у0; столбец из блоков ix  – линейную со-

ставляющую у1; (2)
ix  – нелинейную составляющую у2 

второго порядка, и т.д. до М-го порядка включительно.  
Непосредственное вычисление (13) требует наличия 

полных реализаций входного и выходного сигналов 
фильтра и из-за большой размерности сопряжено с 
большим объемом вычислительных затрат. При обра-
ботке реальных сигналов на практике требуется посто-
янно корректировать параметры фильтра, адаптируя его 
поведение в зависимости от внешней среды, что и обу-
славливает использование алгоритмов адаптивной 
фильтрации. 

Градиентные алгоритмы адаптации 

Градиентный адаптивный алгоритм для класса поли-
номиальных фильтров определяется дифференцирова-
нием среднеквадратической ошибки 2M{ ( ) ( )}d n y n    

между опорным ( )d n  и реальным ( )y n  сигналами на 
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выходе фильтра по вектору h коэффициентов и выгля-
дит следующим образом: 

       1 1ˆn n n n
n n      h h h χ ,    (14) 

где   – параметр адаптации (шаг);  n  – величина 

ошибки рассогласования, равная ( ) ( );d n y n  ˆ
n  – 

оценка вектора градиента / ; h  h – вектор коэффи-
циентов фильтра вида (3). 

В силу линейности полиномиальных фильтров отно-
сительно коэффициентов внешний вид алгоритма (14) 
такой же, как и в случае линейной фильтрации. Отличие 
состоит в том, что здесь вместо вектора nx отсчетов 

входного сигнала фигурирует вектор ,nχ  определяе-

мый (5) и включающий в себя наряду с nx  также векто-

ры ( ) , 2, ,m
n m Mx   произведений входных отсчетов, 

соответствующие различным нелинейным составляю-
щим полиномиального фильтра. 

С целью сокращения дальнейших записей будем ис-
пользовать следующие обозначения: ,0 ,1,n n m χ χ  
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n x  0 0 , 1, , .h m M h   Тогда алгоритм (7) может 
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Единственным параметром, с помощью которого 
можно влиять на поведение алгоритма (15), является 
величина   шага. При малых значениях   скорость 
адаптации будет невысока, но сходимость алгоритма га-
рантируется в достаточно малую окрестность оптималь-
ной точки. Возрастание   приводит к более быстрой 
адаптации, но с большей предельной ошибкой. Чрезмер-
ное увеличение   может нарушить устойчивость процес-
са адаптации, и алгоритм будет расходиться. 

Как известно [2], в линейном случае сходимость ал-
горитма вида (14) гарантируется, если параметр   ле-

жит в диапазоне max0 2 / ,    где max  – наибольшее 

собственное значение корреляционной матрицы xR  
входного процесса. Очевидно, что данная оценка будет 
также справедлива и в нелинейном случае с той лишь 
разницей, что матрица xR  заменяется матрицей χR  
моментов высших порядков вида (9). 

Данная матрица включает в себя матрицу ,xR  объ-

единяющую блоки 0,0 0,1 1,0 1,1, , , .R R R R  Так как значение 

max  не может превышать след матрицы, равный сумме 

ее диагональных элементов [16], a tr( ) tr( ),x  χR R  в 

нелинейном случае параметр   может выбираться в 
меньшем диапазоне, чем в линейном. Это снижает по-
тенциальную скорость сходимости алгоритма (15), что 
ограничивает его непосредственное использование для 
адаптации полиномиальных фильтров. 

Скорость сходимости может быть увеличена путем 

представления полиномиального фильтра в виде компо-
нент с некоррелированными выходами. В этом случае 
адаптация каждой из них может выполняться независи-
мо, что позволяет снизить размерность исходной задачи 
и использовать различные параметры   для адаптации 
отдельных составляющих фильтра. Полную декорреля-
цию всех компонент фильтра, обусловленных нелиней-
ностями различных порядков, возможно осуществить с 
помощью довольно трудоемкой операции ортогонализа-
ции [17]. Для входных процессов с симметричной плот-
ностью распределения вероятности, в основном встре-
чающихся на практике, можно предложить более про-
стой способ. 

Так как для таких процессов все моменты нечетного 
порядка равны нулю, в матрице (9) все блоки , 0,i j R  

для 2 1.i j k    Это дает возможность представить 

систему нормальных уравнений (8), определяющих оп-
тимальный вектор коэффициентов, в виде двух незави-
симых подсистем относительно четных и нечетных мо-
ментов: 
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где  2 2 ,M M    2 2 1,M M    а  2M
 
означает 

ближайшее целое, не превосходящее 2.M  

В соответствии с (16), алгоритм (15) адаптации те-
перь будет выглядеть следующим образом: 
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nn

n n
n

  

 










      
       
           

h h χ
χh h

  (17) 

и фактически представляет собой два независимых ал-
горитма для четных и нечетных составляющих фильтра 
с параметрами   и .  

Если обозначить через ,max  и ,max  максимальные 

собственные значения, соответственно, матриц 


R  и 

,


R  то сходимость алгоритма (17) будет гарантирова-

на при условиях ,max0 2     и ,max0 2 ,     

которые с использованием оценки max ,  через след мат-
рицы могут быть также записаны в виде 
0 2 / tr( ), 0 2tr( )

      χ χR R .  (18) 

Так как параметры   и   адаптации в данном 
случае могут выбираться в более широком диапазоне, 
чем ,  следует ожидать, что по сравнению с исходным 
алгоритмом скорость сходимости алгоритма (17) будет 
выше. 
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Рассмотрим в качестве примера адаптивный нели-
нейный фильтр третьего порядка для входного сигнала 

( )x n  в виде гауссовского процесса с нулевым средним 

и дисперсией 2 .x  Для такого процесса все моменты 
нечетного порядка равны нулю, а моменты четного по-
рядка определяются соотношением [18] 

1 2 2M{ ( ) ( ) ( )} M{ ( ) ( )},k i jx n x n x n x n x n     (19) 
где суммирование производится по всем разбиениям 
совокупности (1, 2, , 2 )k  на пары, а произведение – по 
всем парам в каждом разбиении. При этом количество 
таких разбиений равно (2 )! !2 .kk k  

Если импульсные характеристики 1( , , )m mh n n  

фильтра имеют длительности , 1,2,3,mN m   то, со-

гласно (3), размеры соответствующих блоков mh  векто-

ра коэффициентов будут равны 1.m

m
N mC    Возьмем для 

наглядности 1 2 3 3,N N N    тогда входные векторы 

,nχ  и ,nχ  приобретают вид 
2 2 2

, 1 2 3 1 2 1 3 2 31 ,n x x x x x x x x x    χ  

,

2 2 2 2 2 2
1 2 3 1 2 1 3 2 1 2 3 3 1 3 2 1 2 3 ,

n

x x x x x x x x x x x x x x x x x x
 

   

χ
 

где с целью сокращения записи для обозначения 
( )x n i  используется .ix  

С учетом (19) матрицы моментов, соответствующие 
векторам ,nχ  и , ,nχ  будут выглядеть следующим об-
разом: 
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2 2 2
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,  (20) 
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χ

D D G 0

D D G 0
R

G G D 0

0 0 0

,  (21) 

где ( )L aD  обозначает диагональную матрицу размером 

L L  с элементами, равными a  на диагонали; L K0  
матрицу ,L K  целиком состоящую из нулей, а матри-
ца ( )L K aG  размером L K  имеет вид 

0 0 0 0
0 0 0 0

( )

0 0 0 0

L K

a a
a a

a

a a



 
 
 
 
 
 

G
     

 

и состоит из строк, содержащих сдвинутые пары эле-
ментов, равные a . 

Зная дисперсию 2
x  входного сигнала (мощность), 

на основании полученных выражений (20) и (21) можно 

рассчитать максимальные собственные числа ,max  и 

,max ,  определяющие границы изменения параметров 

  и   адаптации. Для определения приближенных 
границ воспользуемся оценками (18). В результате по-
лучим 

4 2 6

2 20 , 0 ,
1 12 3 64x x x

  
  

   
 

 

Заметим, что структура матриц (20) и (21) сохраняет-
ся при произвольных значениях , 1,2,3,mN m   а изме-
нения будут касаться только размеров блоков. Это дает 
возможность без труда получить следующие оценки 
диапазона изменения параметров адаптации для обще-
го случая 

2

3

2 4
2

2 2 6
1 3

20 ,
1 (3 )

20 .
(1 15 2 )

N x

x N x

N C

N N C


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Рассмотренные алгоритмы адаптации вида (15) и 
(17) предусматривают одновременную коррекцию векто-
ров , 0,1, , ,m m Mh   коэффициентов различных по-
рядков и реализуются фильтром с параллельной струк-
турой, показанной на рис. 1 а. Выбор параметра   для 

алгоритма (15) определяется матрицей χR  большой 

размерности, равной .M M
N M N MC C   Раздельная адапта-

ция четных и нечетных составляющих фильтра, соглас-
но алгоритму (17), основанная на разбиении матрицы 

χR  на две 
χR  и ,

χR  позволяет увеличить скорость 

сходимости за счет использования различных парамет-
ров   и   адаптации для каждой из них. Однако из-за 

того, что матрицы 
χR  и 

χR  содержат моменты раз-

личных порядков, диапазон изменения min max   соб-
ственных чисел может все же оставаться большим. Это, 
как известно [1, 2], приводит к неравномерной сходимо-
сти различных компонент (мод) вектора ошибки. 

Для выравнивания скорости сходимости целесооб-
разно использовать отдельные параметры ,m m   

0,1, , ,M   для каждой составляющей фильтра. Это 
становится возможным, если вместо параллельной кор-
рекции векторов mh  коэффициентов фильтра использо-
вать последовательную в направлении увеличения по-
рядка т нелинейности его составляющих. 

Теоретической основой такого процесса может стать 
метод построения оптимального полиномиального 
фильтра с помощью последовательных приближений 
[15]. В соответствии с данным методом вектор mh  ко-
эффициентов, определяемый на т-м этапе процедуры, 
представляет собой решение системы нормальных 
уравнений: 

, 1 ,{ ( ) },m m m m n me nR h M χ    (22) 

где частичная ошибка 1( )me n  формируется на основе 
полученных на предыдущих этапах векторов 

, 0,1, , 1,i i m h   и равна 
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 а) параллельная  б) последовательная 

Рис. 1  Структуры адаптивных полиномиальных фильтров  
1

1 1 ,
0

( ) ( ) ( ) ( )
m

T
m m i n i

i
e n d n y n d n



 


   h χ .     (23) 

Подставляя (23) в выражение (22), данную процеду-
ру можно также представить как последовательность 
решений матричных уравнений вида 

,0 0 ,1 1 , 1 1 , ,

0, 1, , ,
m m m m m m m m m

m M
     



R h R h R h R h r


  (24) 

относительно mh  при заданных , 0,1, , 1.i i m h   

Применение градиентного метода для решения 
уравнений (22) приводит к следующему адаптивному 
алгоритму: 
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 
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χ h

h h χ

χ h 

 (25) 

Согласно (25), адаптация векторов mh  происходит 
последовательно по отдельным алгоритмам с различ-
ными параметрами m  адаптации для каждого из них. 

Формирование очередного вектора  n
mh  на п-й итерации 

осуществляется на основе ошибки   ,n
m  для вычисле-

ния которой используется вектор  1 ,n
m
h  полученный  

на ( 1)n  -й  итерации,  и  реакция 1( )my n  фильтра  
(m – 1)-го порядка, зависящая от значений векторов 

  , 0,1, , 1n
i i m h   на n-й итерации. Структура нели-

нейного фильтра с последовательной адаптацией пока-
зана на рис. 1 б. 

Для определения условий, гарантирующих сходи-
мость алгоритма адаптации, запишем разностное урав-
нение относительно средних значений вектора коэффи-
циентов. Вычисляя математическое ожидание от обеих 
частей уравнения коррекции вектора, получим 

[ 1] [ 1] [ ] [ 1]
,{ } { } { } { }n n n n

m m m m n m m      M h M h M χ M h  

[ 1]
1 , , ,[ { ( ) } { }].T n

m m m n m n m n m my n 
  r M χ M χ χ h  

Последовательно раскрывая 1( )my n  с помощью по-
следнего выражения из (25) и предполагая, что векторы 
коэффициентов статистически независимы от входных 
векторов преобразуем данное уравнение к виду 

     
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r R h R h
   (26) 

Обозначим через , 0, 1, ,m m Mh   векторы коэф-
фициентов, являющиеся решением системы уравнений 
(24), и введем в рассмотрение величины 
    M ,n n
m m m e h h  характеризующие отклонение сред-

них значений коэффициентов от данного решения. По-
сле подстановки в (26) значение mr  из (24) будем иметь 
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Полученная система разностных уравнений может 
быть представлена в более компактной форме 

     1 ,n n
m m

 Ae I μB e  (27) 

где   [ ] [ ] [ ]
0 1( ) ( ) ( ) ,

Tn n T n T n T
m M   e e e e  а блочно-

диагональные матрицы ,μ B  и нижняя блочно-
треугольная матрица А имеют следующий вид: 
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где размеры mL  блоков равны 1, 1, , .
m

m
N mC m M     

Матрица B  допускает спектральное представление 
в виде 1,B UΛU  где U – унитарная матрица, столб-
цами которой являются собственные векторы В, а Λ  – 
диагональная матрица собственных значений В. В силу 
блочно-диагональной структуры В матрица Λ  опреде-
ляется через матрицы ,mΛ  состоящие из собственных 

чисел отдельных блоков, и равна 1diag(1, , , ).MΛ Λ  
Воспользуемся теперь приемом из [2], записав (27) в 

новой системе координат. Используя подстановку 
   n ne Uv  и учитывая коммутативность матриц μ  и U, 

получим 
     1n n Dv I μΛ v ,     (28) 

где 1 .D U ΛU  Обозначим 0 01 ,    ,m m m γ I Λ  

1, , ,m M   тогда матрица ( )I μΛ  будет равна 

0 1diag( , , , ).M γ γ  Если параметры m  адаптации вы-
брать из условий 

0 ,max0 1, 0 2 ,m m        (29) 

где ,maxm  – максимальное собственное число блока 

, ,m mR  то будет справедливо 

0lim 0,n

n



  lim ,n

mn
γ 0  1, , .m M      (30) 

При отсутствии корреляции между различными 
входными векторами ,n iχ  матрицы ,i j R 0  для .i j  В 

этом случае D = I и из (30) с очевидностью следует, что 
   0lim lim .n n
m m mn n 
 v v γ 0  

Покажем теперь, что при условиях (29) сходимость 
алгоритма будет обеспечиваться также и в общем слу-
чае. Прежде всего заметим, что матрицы U и U–1 явля-
ются блочно-диагональными так же, как и матрица В. 
Непосредственной проверкой можно убедиться, что 
преобразование U–1AU не изменяет структуру матрицы 
А, оставляя ее блочно-треугольной. В результате мат-
рица D будет отличаться от А только своими блоками, 
которые обозначим , .i jD  

Сходимость  n
m v 0  доказывается по индукции. 

Для 0m   имеем      1 0
0 0 0 0 0 .n n n   v v v 0  Используя 

разностное уравнение (28), выразим  
1
nv  через  0

0v  и 
 0
1v  следующим образом: 
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Так как все члены в (31) имеют порядок 

0 1( ), ,i jO i j n  γ  имеем   .n
m v 0  Аналогичным обра-

зом можно показать, что 

     
1

0
,

0 1

m n
n jn n j

m m m m i m i
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Учитывая, что   0 1
0 1( ),ij k kk

i iO   v γ γ   0 ik k    

j  для ,i m  на основании (32) будем иметь   .n
m v 0  

На практике для выбора параметров m  адаптации 
вместо (29) можно воспользоваться оценками 

,0 2 tr( ).m m m  R  В частности, для нелинейного 
фильтра третьего порядка с некоррелированным гауссо-
вым процессом на входе, имеющим дисперсию 2 ,x  
параметры адаптации будут определяться следующим 
образом: 

00 1,   1 2
1

20 ,
xN




   
2

2 2 4
2

20 ,
(3 )N xN C




 


 

3

3 2 6
3

20 .
(1 15 2 )N xN C




 
 

 

Хотя последовательный алгоритм адаптации обла-
дает более высокой скоростью сходимости, чем парал-
лельный, в общем случае нельзя гарантировать, что он 
сходится к оптимальной точке. Другими словами, 

 
optM{ } ,n  h h h  т.к. системы нормальных уравнений 

(8) и (24), определяющие, соответственно, векторы opth  

и ,h  отличны друг от друга. 
Для достижения необходимой точности без суще-

ственной потери скорости адаптации можно совместить 
последовательный алгоритм с параллельным, используя 
последний для уточнения текущего вектора коэффици-
ентов. Другим возможным решением является добавле-
ние к последовательной схеме на рис. 1 б дополнитель-
ной обратной связи (показана пунктиром), периодиче-
ское замыкание которой будет приводить к снижению 
систематической ошибки адаптации. 

Рекурсивный алгоритм адаптации  
с экспоненциальным взвешиванием 

В рассмотренных алгоритмах адаптации для оценки 
вектора градиента использовалось значение ошибки 
рассогласования лишь в одной (текущей) точке. Как 
следствие этого, вектор коэффициентов будет иметь 
значительную случайную составляющую. Другим недо-
статком градиентных алгоритмов является неравномер-
ная сходимость различных компонент вектора коэффи-
циентов. Согласно [2], такая неравномерность увеличи-
вается с ростом диапазона изменения собственных чи-
сел корреляционной матрицы. В частности, можно пока-
зать, что для последовательного алгоритма адаптации 
постоянные времени ,m  характеризующие сходимость 

различных компонент mh  вектора коэффициентов, бу-

дут определяться отношением ,max ,min2 ,m m   где ,maxm  
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и ,minm  максимальное и минимальное собственные 

числа матрицы , .m mR  

Улучшение отмеченных свойств процесса адапта-
ции возможно за счет использования алгоритмов нью-
тоновского типа с экспоненциальным взвешиванием, 
называемых также рекурсивными алгоритмами на-
именьших квадратов [2]. Хотя данные алгоритмы тре-
буют больших вычислительных затрат по сравнению с 
градиентными, они обладают более высокой и равно-
мерной скоростью сходимости, а также менее подвер-
жены влиянию шумов [1, 2]. 

Рассмотрим последовательный процесс адаптации 
полиномиальных фильтров, основанный на использо-
вании данного класса алгоритмов. Пусть на n-й итера-

ции уже получены компоненты      
0 1 1, , ,n n n

mh h h  вектора 

коэффициентов. Вычисление очередного вектора  n
mh  

осуществляется путем минимизации взвешенной суммы 
квадратов ошибок: 

2

0

min ( ),
n

n i
m

i
e i 


   (33) 

где постоянная   «забывания» определяет степень 
влияния предыдущих значений ошибки и выбирается в 
диапазоне 0 1,   a частичная ошибка ( )me i  опреде-
ляется выражением (23). 

Решение 1M   задач вида (33) для различных зна-
чений 0,1, ,m M   приводит к следующей системе 
нормальных уравнений: 

     
,

0

, 0,1, , ,
m

n n n
m i i m

i
m M



 R h r    (34) 

которая отличается от (24) тем, что вместо точных зна-
чений матриц ,m jR  и векторов mr  содержит их оценки 

вида 
     , , , ,

0 0

, .
n n

n nn i T n i
m j i m i j m i m

i i
d n  

 

  R χ χ r χ  

Данные оценки могут определяться рекурсивно с 
помощью выражений 

         1 1
, , , , ,, .n n n nT

m j m j n m n j m m n md n     R R χ χ r r χ  (35) 
Для построения алгоритма адаптации решим (34) 

относительно   ,n
mh  считая      

0 1 1, , ,n n n
mh h h  известными 

         
1

,
0

,
m

n n n n n
m m m m i i

i





   
 

h P r R h    (36) 

где  n
mP  представляет собой матрицу, обратную  

, .n
m mR  

С учетом (35) данное выражение можно представить в 
виде 

         

   

   

1
1 1

,
0

1

, ,
0

, , 1 ,

m
n n n n n

m m m m i i
i

m
nT

n m n i i
i

n
m n m n m m

d n

e n






 









  
    

 
 

   
 

   





h P r R h

χ χ h

P θ χ

    (37) 

где      
1

1 1
, ,

0

.
m

n n n
n m m m i i

i


 



 θ r R h  

Используя для вычисления  n
mP  рекурсивный метод 

обращения матриц [2], можно показать, что 

        
 

 

 

1 1
,

1
,
1

, ,

1 ,

.

n n n nT
m m m n m m

n
n m n m

m nT
n m m n m





 





 




P P s χ P

P χ
s

χ P χ

  (38) 

Подставим выражение (38) для  n
mP  в (37) и выпол-

ним следующие преобразования: 
       
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 
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  

 
   
  

  

h P θ s χ P θ

P χ χ P χ
P χ

χ P χ

P θ s χ P θ s

 

Для упрощения полученного выражения предполо-
жим, что    1n n

i i
h h  для i = 0, 1, ..., т-1. Тогда на осно-

вании (36) имеем    1 1
, ,n n

m n m m
 P θ h  и алгоритм адапта-

ции можно представить в виде 
       
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P P s χ P

P χ
s

χ P χ

h h s
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 (39) 

По сравнению с (25) данный алгоритм предусматри-
вает рекурсивное вычисление матрицы   ,n

mP  на что до-

полнительно затрачивается приблизительно 2( )mO L  
операций умножения. В то же время, поскольку при вы-

числении вектора   ,n
ms  определяющего направление 

поиска, используется взвешенное суммирование пред-
шествующих отсчетов входного сигнала, процесс адап-
тации по алгоритму (39) имеет более гладкий характер и 
обеспечивает меньшие флуктуации при приближении к 
оптимальной точке. При этом величина шумовой со-
ставляющей коэффициентов фильтра зависит от памяти 
фильтра и определяется постоянной  . 

Можно показать, что система разностных уравнений 

относительно векторов ошибок      ,n n
m m m e M h h  ха-

рактеризующая свойства сходимости алгоритма (39) в 
среднем будет определяться выражением (27), если в 
матрицах ,μ  А, В произвести формальную подстановку 

 .n
m m  P  Тогда на основании (29) условия, гаранти-

рующие сходимость алгоритма, принимают вид 

,max0 2 ,m    где ,maxm  – максимальное собственное 

число произведения матриц  
, .n

m m mP R  Так как 
  1

, ,n
m m m

P R  можно считать, что ,max 1m   для всех т. 

Таким образом, в данном случае сходимость алгоритма 
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будет иметь равномерный характер относительно со-
ставляющих фильтра различного порядка т независимо 
от разброса собственных чисел корреляционных матриц 

, .m mR  

Заключение 

Рассмотрены алгоритмы адаптивной нелинейной 
фильтрации для класса полиномиальных фильтров 
(фильтров Вольтерра) во временной области. Свойство 
линейности полиномиальных фильтров относительно 
своих коэффициентов позволяет, с одной стороны, в 
значительной степени использовать принципы построе-
ния алгоритмов адаптации линейных фильтров, а с дру-
гой, имеет ряд особенностей, связанных с выбором па-
раметров адаптации для различных нелинейных со-
ставляющих фильтра. 

Показано, что для нелинейных фильтров диапазон 
выбора параметра адаптации градиентных алгоритмов 
сужается по сравнению с линейным случаем и опреде-
ляется корреляционными моментами высших порядков. 
Для ускорения скорости сходимости градиентных алго-
ритмов адаптации для процессов с симметричной плот-
ностью распределения вероятности вместо проведения 
трудоемкой операции ортогонализации предложен ал-
горитм, основанный на раздельной адаптации четных и 
нечетных нелинейных составляющих фильтра. Данный 
подход рассмотрен на примере нелинейного фильтра 
третьего порядка, для которого получены оценки допу-
стимых границ параметров адаптации. 

С целью выравнивания скорости сходимости от-
дельных нелинейных составляющих фильтра предло-
жен алгоритм последовательной адаптации, основан-
ный на выполнении итераций в направлении увеличе-
ния порядка нелинейности составляющих фильтра. До-
казана сходимость такого алгоритма и получены оценки 
для выбора его параметров. Показано, что наряду с 
увеличением скорости сходимости, последовательный 
алгоритм адаптации в то же время не гарантирует схо-
димость к оптимальной точке. Для достижения необхо-
димой точности без существенной потери скорости 
адаптации предложена комбинированная схема, осно-
ванная на совместном использовании последователь-
ного и параллельного алгоритмов адаптации, используя 
последний для уточнения текущего вектора коэффици-
ентов фильтра. Другим возможным решением является 
добавление к последовательной схеме дополнительной 
обратной связи, периодическое замыкание которой при-
водит к снижению систематической ошибки адаптации. 

Увеличение и выравнивание скорости сходимости 
процесса адаптации может быть достигнуто за счет ис-
пользования алгоритмов ньютоновского типа (рекурсив-
ных алгоритмов наименьших квадратов). Предложен 
рекурсивный алгоритм адаптации полиномиальных 

фильтров с экспоненциальным взвешиванием, обеспе-
чивающий, наряду с возрастанием скорости сходимости, 
сглаживание случайных флуктуаций при приближении к 
оптимальной точке, а также выравнивание скорости схо-
димости относительно нелинейных составляющих 
фильтра.  
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