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Рассматривается алгоритм слепой деконволюции изображений, 
искаженных в случайной среде и зарегистрированных как набор слу-
чайных реализаций. Предлагаемый подход, основанный на полино-
миальных представлениях, сводит задачу деконволюции изображе-
ний вслепую к задаче факторизации ковариационной матрицы за-
данной структуры. Для решения задачи используется метод сле-
пой идентификации, использующий полиномиальные статистики 
второго порядка, генерируемые случайными полиномами. В статье 
представлены результаты моделирования предложенного алго-
ритма деконволюции изображений. Алгоритм может быть исполь-
зован при решении задачи восстановления изображения, возникаю-
щей в астрономии при использовании метода спекл-интерферо-
метрии, техническом телевидении. 
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Введение 

Задача восстановления изображений раз-
личной природы – это задача восстановления 
пространственно ограниченного двумерного 
сигнала, искаженного линейным преобразова-
нием на фоне аддитивного шума [1, 2].  

Искажение изображения обычно является 
результатом нежелательного линейного преоб-
разования. Причиной такого преобразования мо-
гут быть: расфокусировка оптической системы, размытие 
из-за движения камеры и объекта съемки, предел ди-
фракции и влияние среды распространения света.  

Если ядро линейного преобразования известно, то 
реконструкция изображения может быть выполнена с 
использованием оптимального фильтра, построенного в 
соответствии с выбранной стратегией регуляризации [3].  

В случаях, когда эта информация недоступна, ин-
формация о ядре искажающего оператора может быть 
извлечена непосредственно из наблюдаемого изобра-
жения. Эта проблема упоминается в литературе как 
слепая деконволюция сигналов или изображений [4, 5].  

Проблема деконволюции изображений вслепую воз-
никает в области дистанционного зондирования Земли, 
астрономии и медицины, обработки фото- и видеомате-
риалов и т.п. В работах, посвященных слепой обработке 
сигналов, часто упоминается, что возможности многока-
нальной слепой идентификации больше, чем у однока-
нальной [5]. Поэтому эта группа методов используется 
чаще [13]. 

Подобная задача возникает в современных системах 
беспроводной связи, использующих технологию MIMO. 

В этом случае говорят о задаче многоканальной слепой 
коррекции, где целью является оценка неизвестного 
входного сигнала, по выходному, без знания источника 
сигнала или канала [6-7].  

Эта тема становится довольно популярной в беспи-
лотных летательных аппаратах. Так, например, одна из 
недавних статей посвящена разработке алгоритма вос-
становления изображения вслепую по серии изображе-
ний с использованием локальной и нелокальной инфор-
мации об изображениях [9].  

В этой статье мы будем рассматривать случай мно-
гоканальной слепой деконволюции изображений, кото-
рый также известен как многокадровая слепая деконво-
люция (MFBD) [8]: т.е. задача восстановления исходного 
изображения из последовательности нечетких и зашум-
ленных наблюдений. 

Несмотря на значительные успехи методов машинно-
го обучения по восстановлению искаженных изображений 
[13-16], поиск эффективных регулярных методов также 
остается актуален. В данной работе мы продолжим раз-
витие регулярных статистических методов, основанных на 
применении полиномиальных статистик [12].  
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Слепая деконволюция изображений  
на основе полиномиальных представлений 

Рассмотрим математическую модель искаженного 
изображения, заданного в дискретном времени. 

2 2

11
( , ) ( , ) ( , ) ( , ).

j

N M

n
y l i h n j x n l j i v l i



           (1) 

В этом выражении 1,..., ,l N  1,..., ,i M  1N N   

2 1,N   1 2 1,M M M    ( , )x n j  – двумерная после-
довательность исходного изображения с добавлением 
нулей, ( , )h n j  – искажающая случайная функция в дис-

кретном времени, ( , )v l i  – аддитивный шум. 

Выражение (1) можно представить в полиномиаль-
ной форме 

1 2 1 2 1 2 1 2(z , ) (z , ) (z , ) (z , )y z h z x z v z .`  (2) 
В рассматриваемой задаче мы имеем набор искажен-

ных изображений 1 2(z , ),ky z  где k-номер изображения, и 

1 2(z , )kh z  – набор искажающих случайных функций.  

Начальный момент второго порядка наблюдаемого 
набора случайных изображений можно представить в 
виде 

1 2 3 4(z , , , )yK z z z   (3) 
*

1 2 1 2 3 4 3 4 1 2 3 4(z , ) (z , , , ) (z , ) (z , , , ).h vx z K z z z x z K z z z  

Пусть мы имеем оценку 1 2 3 4
ˆ (z , , , ),yK z z z  получен-

ную по набору реализаций 1 2(z , ),ky z  знаем 

1 2 3 4( , , )z ,hK z zz  и 1 2 3 4(z , , , ),vK z z z  тогда мы можем за-
писать выражение, где искомое изображение представ-
лено в явном виде  

*
1 2 3 4(z , ) (z , )x z x z   (4) 
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Т.к. правая часть получена по конечному набору дан-
ных, то мы будем искать оценку изображения, решая за-
дачу факторизации ковариационной матрицы заданной 
структуры методом наименьших квадратов в виде 

1 2ˆ(z , )x z   (5) 
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Как было показано в [4], полиномиальные представ-
ления позволяют улучшить качество решения задачи 
(5), если использовать значения 1 2 3 4z , , , ,z z z  располо-
женные на многообразии заданной корреляции вида 

4
1 2 3 4 1 2 3 4{(z , , , ) : (z , , , ) , 0}.h

t hV z z z Z K z z z t t     (6) 
Данный алгоритм (далее А1) может быть реализован 

непосредственно в виде (5-6), однако его вычислительная 
сложность быстро растет с увеличением размера изобра-
жения, кроме этого выбор сечений на многообразии h

tV  
как правило исключает значения, модуль которых равен 1, 
что в свою очередь приводит к необходимости вычисления 
больших степеней и соответственно к вычислениям с 
большими числами и росту погрешности вычислений. 

Далее мы рассмотрим подход, основанный на сведе-
нии задачи к одномерному случаю, что несколько упро-
щает реализацию алгоритма восстановления.  

Алгоритм слепой деконволюции изображения 

Математическая модель соответствующего одномер-
ного канала в полиномиальной форме может быть пред-
ставлена в виде   
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Алгоритм идентификации изображений по заданным 
корреляционным многообразиям мы можем представить 
в виде следующей последовательности операций:  

1. Преобразование двумерной свертки в набор одно-
мерных сверток, выходные отсчеты которых можно 
представить в виде 
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где 
1 1, 1( ,..., )N N Nz zV  – 1N N  матрица Вандермонда, и 

1, 1( ),...,i k Nz zy  – 1N -мерный вектор выходных отсчетов 

k-го сигнала, образованный 
11,..., Nz z  – различными се-

чениями, ( )k iy  – N -мерный вектор выходных отсчетов 

k-го сигнала, 1,..., sk N . 

2. Оценка импульсной характеристики одномерных 
каналов с помощью статистических  алгоритмов слепой 
идентификации канала одномерной системы.  

Одномерный алгоритм слепой идентификации может 
быть реализован различными способами. В данной ра-
боте мы  используем подход, который аналогично (5-6), 
использует многообразия заданной корреляции [11]. 
Т.о., далее выполняется преобразование парных корре-
ляций выходного сигнала: 
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где 
1 1, 1( ,..., )M M M V  матрица Вандермонда 1 ,M M  и 

,k nx  – 1M -мерный вектор выходного сигнала одномер-
ной системы. 

3. Оценка ковариационной матрицы  
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где nW  – известная ковариационная матрица аддитив-
ного шума. 

4. Вычисление собственных векторов матрицы 

, ,n , ,n( / ),n i j i jr tG  
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5. Вычисление вектора отсчетов входных парамет-
ров одномерных каналов 
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6. Восстановление изображения по вычисленным 

характеристикам одномерных каналов, 11,...,i M , 
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1 11,1 ,,..., N Mx x  – искомые отсчеты входного изображения.  

Эффективность алгоритма зависит от выбора попе-
речных сечений 

11,..., Nz z  и 
11,..., M  . 

Для простоты реализации и по причинам, упомяну-
тым выше, в отличие от алгоритма (5-6) сечения 

11,..., Nz z  лучше выбрать на единичной окружности в 

комплексной плоскости.   
В алгоритме одномерной идентификации мы ис-

пользуем стратегию выбора поперечного сечения 

11 1,..., ,M    на многообразии заданной корреляции, 

которое имеет следующий вид 
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где 
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Как показано в работах [4, 11], это гарантирует, что в 
матрице , ,n , ,n( / )n i j i jr tG  нет бесконечных компонент. 

Однако при использовании алгоритма одномерной 
слепой идентификации мы имеем N1 неопределенных 
констант, без знания которых мы не можем восстано-

вить исходное изображение. Необходимые константы 
могут быть получены из уравнения для выборочной и 
вычисленной ковариации вида 

* *
1 2 , 1 ,k 2

1[ ( ) ( )] ( ) ( ),i i i k i
ks

E y z y z y z y z
N

    (15) 

Nr  – число реализаций, , 1( )i ky z  – k-я реализация. 

Можно показать, что если искажающее поле пред-
ставляет собой двумерное множество независимых слу-
чайных величин с дисперсией 2 ( , ),h n i  то вычисленная 
ковариация имеет вид 

2 2
* * 2 1 * 1
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M N
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Тогда, если 1ˆ ( )jx z  – оценки одномерных каналов, 

полученных на 5-м этапе алгоритма, то искомое уравне-
ние принимает вид 
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1( )c z  – многочлен, коэффициенты которого являются 
искомыми константами. 

Результаты моделирования 

Проведенное моделирование иллюстрирует эффек-
тивность предложенного алгоритма. На рис. 1 показано 
влияние числа реализаций. На рис. 2 показано влияние 
аддитивного шума. При моделировании использован 
размер изображения 52×52, размер искажающей слу-
чайной комплексной импульсной характеристики 53×53, 
реализации имеют гауссовское распределение и стати-
стически независимы. 

Для сравнения на рис. 3 показан результат модели-
рования алгоритма спектральной факторизации (А2) 
[12]. Этот алгоритм является частным случаем А1, а 
именно, случаем когда все сечения выбираются на еди-
ничной окружности в комплексной плоскости. 

Алгоритм востановления изображений, основанный 
на заданных корреляционных многообразиях (А1), де-
монстрирует лучшую сходимость и помехоустойчивость 
по сравнению  с  соответствующим  алгоритмом, исполь- 

 
Рис. 1.  Алгоритм А1, слево направо, сверху вниз: исходное изображение; пример искаженного изображения; востановленное 

изображение после обработки 200 реализаций; востановленное изображение после обработки 400 реализаций; востановленное 
изображение после обработки 800 реализаций; востановленное изображение после обработки 1600 реализаций без шума 
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Рис. 2. Алгоритм А2, слево направо, сверху вниз: исходное изображение; пример искаженного изображения;  

востановленное изображение после обработки 200 реализаций; востановленное изображение  
после обработки 400 реализаций; востановленное изображение после обработки 800 реализаций; востановленное изображение 

после обработки 1600 реализаций без шума 

 
Рис. 3. Алгоритм А1 – первый ряд, А2 – второй ряд, слево направо: востановленное изображение  

после обработки 1600 реализаций, SNR-1дБ; востановленное изображение после обработки 1600 реализаций, SNR-10 дБ;  
востановленное изображение после обработки 1600 реализаций, SNR-20дБ с аддитивным гауссовским шумом 

зующим спектральную факторизацию (А2). Это объяс-
няется отсутствием нулей в , ,i j nt  при вычислении мат-

риц ,nG  при этом алгоритм А2 имеет лучшее быстро-
действие. 

Заключение 

Таким образом, в статье показана возможность восстанов-
ления изображения, искаженного в случайной среде и зареги-
стрированного как набор случайных реализаций. Предполага-
ется, что искажающий изображение случайный импульсный 
отклик линейной среды описывается случайным дискретным 
полем с независимыми нестационарными случайными коэф-
фициентами. Предлагаемый подход сводит задачу статистиче-
ской деконволюции изображений вслепую к задаче слепой 
идентификации одномерных сигналов. Далее для решения 
одномерной задачи используется метод полиномиальной ста-
тистики второго порядка, генерируемый случайными полино-
мами. В статье представлены результаты моделирования 
предложенного алгоритма. Алгоритм может быть использован 
в задаче восстановления изображения, возникающей в астро-
номии при использовании метода спекл-интерферометрии, 
техническом телевидении. 
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