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Рассмотрена разработка математического обеспечения для 
восстановления численных значений отсчетов дискретной после-
довательности равномерно дискретизированного непрерывного во 
времени сигнала. Разработка осуществлена на основе аппроксима-
ционного метода и построения системы базисных полиномов дис-
кретного аргумента. Система базисных полиномов строится в 
зависимости от порядка аппроксимирующей модели с учетом того, 
что каждый последующий полином должен быть ортогональным с 
двумя предыдущими полиномами. Полученное математическое ре-
шение сокращает объем вычислительных процедур в два раза по 
отношению к количеству подлежащих восстановлению отсчетов 
последовательности. Это достигается за счет возможности в 
процессе восстановления проблемного участка последовательно-
сти осуществлять вычисление оценок значений отсчетов одно-
временно как вперед, так и назад. Практическим результатом 
стала разработка алгоритмического обеспечения. Оно реализовано 
в виде функционально завершенного программного модуля. Данный 
модуль разработан в соответствии с нормативными требования-
ми, предъявляемыми к проектированию программных компонент, 
влияющих на точностные характеристики вычислительных проце-
дур. Модуль предназначен для работы в режиме асинхронного 
управления без прерывания выполнения основной прикладной про-
граммы, осуществляющей обработку сигнала. Численные экспери-
менты по оценке метрологических и функциональных возможно-
стей алгоритмического обеспечения и программного модуля прово-
дились с использованием имитационного моделирования. Резуль-
таты экспериментов показали, что восстановление отсчетов 
осуществляется с достаточно низкой погрешностью. 
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The article discusses the development of mathematical software for recovery the numerical values of samples of a discrete sequence of 
a uniformly sampled continuous signal in time. The development was carried out on the basis of the approximation method and the 
construction of a basic polynomials system for a discrete argument. The basic polynomials system is constructed depending on the or-
der of the approximating model, taking into account the fact that each subsequent polynomial must be orthogonal with the two previous 
polynomials. The resulting mathematical solution reduces the amount of computational procedures by half in relation to the number of 
sequence samples to be recovery. This is achieved due to the possibility of calculating estimates of the values of the samples simulta-
neously both forward and backward in the process of recovery the problem section of the sequence. The practical result was the devel-
opment of algorithmic support. It is implemented as a functionally complete software module. This module was developed in accord-
ance with regulatory requirements for the development of software components that affect the accuracy characteristics of computing 
procedures. The module is designed to operate in asynchronous control mode without interrupting the execution of the main application 
program that performs the current signal processing. Numerical experiments to evaluate the metrological and functional capabilities of 
the developed algorithmic support and software module were carried out using simulation modeling. The results of numerical experi-
ments have shown that the recovery of the samples is carried out with a fairly low error. 
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Введение 

В процессе цифровой обработки сигнала од-
ной из актуальных задач является восстановле-
ние утраченных значений отсчетов его дискрет-
ной последовательности. В частности, решение 
такой задачи представляет особый интерес при 
обработке сигналов в радиолокации, вибродиа-
гностике, системах беспроводной передачи дан-
ных, в ходе анализа речевых сигналов и т.п. [1-3]. 

Утрата значений отсчетов дискретной после-
довательности сигнала может произойти по тех-
ническим причинам их источников или средств 
принимающей стороны. Это также может быть 
обусловлено внешними воздействиями на сиг-
нал при его передаче [4-6]. Эффект краткосроч-
ного дрожания импульсов тактовой частоты син-
хронизирующих устройств может привести к 
неравномерности временной сетки формирова-
ния отсчетов на отдельных участках дискретной 
последовательности [7, 8]. В отдельных случаях 
преднамеренно осуществляется нерегулярное 
формирование дискретной последовательности 
[9-15]. Неравномерность представления сигнала 
в дискретном виде может иметь место в высоко-
скоростных многоканальных системах цифровой 
обработки сигналов. Это может происходить на 
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участках объединения выборок, формируемых несколь-
кими параллельно работающими низкоскоростными 
аналого-цифровыми преобразователями [16, 17]. 

Утрата значений отсчетов приводит к необходимости 
восстановления (реконструкции во времени) дискретной 
последовательности сигнала. В случае наличия не-
большого числа утраченных отсчетов они могут быть 
заменены отсчетами с нулевыми или усредненными 
значениями. Это снижает вероятность грубых ошибок. 
Тем не менее, при анализе коротких выборок результи-
рующая погрешность может превысить допустимую по-
грешность цифровой обработки сигнала. Прежде всего, 
это может отрицательно отразится на погрешности от 
смещенности конечного результата. С целью обеспече-
ния более эффективных результатов восстановления 
дискретной последовательности активно разрабатыва-
ются специальные методы [18-26]. В общем случае ос-
нову этих методов составляют частотно-временное 
преобразование или разложение во временные ряды. В 
первом случае восстановление сигнала основано на 
применении различных адаптивных ядер. Однако такой 
подход может негативно повлиять на форму спектраль-
ного представления анализируемого сигнала. Во втором 
случае восстановление дискретной последовательно-
сти осуществляется на основе аппроксимативного под-
хода. Он обеспечивает хорошую сходимость процедур 
восстановления во временной области. Однако вычис-
лительная эффективность алгоритмов, реализующих 
данный подход, может снижаться с увеличением числа 
восстанавливаемых отсчетов. Следствием этого может 
стать снижение эффективности восстановления значе-
ний отсчетов в реальном режиме цифровой обработки 
сигнала. 

Таким образом, актуальной задачей является раз-
работка математического обеспечения, позволяющего 
реализовать алгоритмы с повышенной вычислительной 
эффективностью восстановления дискретных последо-
вательностей сигналов. Это позволит расширить об-
ласть применения таких алгоритмов в процессе цифро-
вой обработки сигналов. 
Предлагаемый подход к восстановление 
дискретной последовательности сигнала  
с использованием системы ортогональных 
полиномов дискретного аргумента 

Задачу восстановления дискретной последователь-
ности отсчетов ix  будем решать исходя из того, что 

исходный непрерывный сигнал ( )x t  является стацио-
нарным или хотя бы квазистационарным. Выполнение 
условия квазистационарности позволяет учесть также 
те сигналы, для которых частотно-временные характе-
ристики можно считать неизменными в пределах интер-
вала времени их наблюдения. 

Пусть дискретизация сигнала ( )x t  осуществлена с 
частотой заданной согласно теореме Котельникова. 
Допустим, что для [0; ]i   и [ 1; 1]i M N     от-

счеты ix  получены без искажения временной сетки, и 

их значения известны точно. Значения M отсчетов ix  

для [ 1; ]i M     образуют проблемный участок. 
Они могут быть искажены, утрачены или не соответ-
ствовать равномерной временной сетке. В любом слу-
чае в процессе обработки последовательности значе-
ния этих отсчетов должны быть восстановлены. 

Будем восстанавливать значения отсчетов ix  для 
[ 1; ]i M     по предыдущим [ 1; ]i L     и по-

следующим значениям отсчетов [ 1;i M    
],M L    где значение L должно удовлетворять 

условиям 1 0L     и 1.M L N      Для вычис-
ления оценок значений отсчетов исходной последова-
тельности будем использовать модель: 

0

ˆ ( ),
p

ix a P i 
 

   (1) 

где ( )P i  – полином порядка   дискретного аргумента 

,i  a  – весовые коэффициенты; p – порядок модели. 

Построение модели (1) осуществим на основе кри-
терия минимума квадратической погрешности: 

2
2

0

ˆ( ) ( ) min
p

p i i i
i i

x x a P i x 





 
     

 
   ,  (2) 

где [ 1; ]i L     и [ 1; ].i M M L       
Вычислим частные производные первого порядка 

/ ,p na   где 0,1,2,3,..., ,n p  и приравняем их нулю. 

Тогда получаем, что p  будет минимальной, если зна-

чения a  будут находиться из решения системы урав-
нений: 

0
( ) ( ) ( ),

p

n i n
i i

a P i P i x P i 
 

    0,1,2,...n p .  (3) 

Будем использовать ортогональные полиномы, т.е. 
они будут удовлетворять условию: 

( ) ( ) 0,n
i

P i P i   если .n  .   (4) 

С учетом (4) из (3) получаем: 

2

( )
,

( )

i
i

i

x P i
a

P i










 0,1,2,... .p  .    (5) 

Также с учетом (4) будем иметь: 

2 2 2

0
( ).

p

p i
i i

x a P i 





     (6) 

Ортогональные полиномы ( )P i  будем строить со-
гласно следующему правилу: 

0 1 1

1 2 2

( ) 1;    ( ) ;
...

( ) ( ) ( ) ( ),   где  2,3,...

P i P i i

P i i P i P i    



    

  


    

  (7) 

Для полинома 0 ( ) 1P i   будет выполняться следую-
щее равенство: 

0
0 0 0( 1) ( ) ( 1) ( ).P i M P i P i            (8) 

Значения величин   и 2   определим из (4). Это 

условие для полинома ( )P i  порядка   будет выпол-
нено для всех 0,1,2,... ,n p  если оно будет выполнено 
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для 1n    и 2,n    т.е. полином ( )P i  должен 
быть ортогональным с двумя предыдущими. 

Принимая во внимание, что 0 ( ) 1P i   имеем: 

1 0 1 1( ) ( ) ( ) (2 1 2 ) 0.
i i

P i P i i L M            (9) 

Из (9) получаем: 
1 (2 1) / 2.M     (10) 

Тогда полином первого порядка примет вид: 
1( ) (2 1) / 2.P i i M     (11) 

Полинома первого порядка (11) обладает следую-
щими свойствами: 

1( ) ( ( 1) / 2)P i i M       и 

1( 1) ( ( 1) / 2).P i M i M         (12) 
Из (12) следует, что 

1
1 1( 1) ( 1) ( ).P i M P i          (13) 

Полином порядка 2   должен быть ортогональным 
с полиномами, порядок которых равен 2   и 1.   
Согласно (4) он должен удовлетворять условиям: 

2( ) ( ) 0
i

P i P i     и 1( ) ( ) 0.
i

P i P i        (14) 

Условия (14) с учетом (7) примет вид: 
2

1 2 2 2( ) ( ) ( ) ( ) 0,
i i

i P i P i P i             (15) 

2
1 2 2 1( ) ( ) ( ) ( ) 0.

i i
i P i P i P i             (16) 

Полиномы 1( )P i   и 2 ( )P i   ортогональны между со-
бой. Принимая это во внимание, а также то, что в (15) и 
(16) [ 1; ]i L     и [ 1; ],i M M L       получа-
ем соотношения для построения полиномов произволь-
ного порядка: 

   (17) 
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 
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 

 


    
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


  (18) 

Для полинома второго порядка с учетом (8) и (13) 
получаем: 

2 (2 1) / 2,M      (19) 
1

2
1

0
0 1

2
0

0

( 1)
.

( 1)

L

i
L

i

P i M

P i M













  

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


 (20) 

Сопоставляя (10) и (19) между собой, приходим к 
выводу, что 2 1.   Тогда с учетом (11) полином вто-
рого порядка будет иметь вид: 

2
2 1 0 0( ) ( ) ( ).P i P i P i     (21) 

Исходя из (8) и (13) для полинома второго порядка 
будет справедливо соотношение: 

  2
2 21 ( 1) ( ).P i M P i           (22) 

Принимая во внимание (8), (13) и (22), для полинома 
третьего порядка будем иметь: 

3 (2 1) / 2,M      (23) 
1

2
2

0
1 1

2
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( 1)
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
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  (24) 

Полином третьего порядка определяется соотноше-
нием: 

3 1 2 1 1( ) ( ) ( ) ( ).P i P i P i P i     (25) 

Как и полиномы 0 ( ),P i  1( )P i  и 2 ( )P i  полином третье-
го порядка обладает свойством: 

3
3 3( 1) ( 1) ( ).P i M P i           (26) 

Осуществляя процедуру определения ортогональ-
ных полиномов последующих порядков, получаем си-
стему для их построения: 

0 1

1 1 2 2

( ) 1;    ( ) (2 1) / 2;
...

( ) ( ) ( ) ( ),   где  2,3,...

P i P i i M

P i P i P i P i   
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

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 (27) 

где 

2 1 2/ ,A A       
1

2

0

( 1).
L

i
A P i M  





       (28) 

Полином порядка ν обладает свойством: 
( 1) ( 1) ( ).P i M P i

           (29) 
Принимая во внимание (29), можно записать: 

1
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0

( ).
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A P i  





     (30) 

Теперь, после того как рассмотрена система постро-
ения ортогональных полиномов, вернемся к соотноше-
ниям (5) и (6). С учетом (27) получаем: 
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0,1, 2,..., ;p   (31) 
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i

x x a A   





   
 

     (32) 

Соотношение (31) определяет процедуру вычисле-
ния весовых коэффициентов a  модели (1), а соотно-
шение (32) определяет значение квадратической по-
грешности результатов восстановления в зависимости 
от порядка модели p. 

Рассмотрим упрощение вычисления весовых коэф-
фициентов .a  Введем обозначение: 

( ) ( 1).B i P i M       (33) 

Для вычисления этих полиномов будем иметь си-
стему: 

0 1

1 1 1 2 2

( ) 1;    ( ) (2 1) / 2;
...

( ) ( ) ( ) ( / ) ( ),
где  2,3,..

B i B i i M

B i i B i A A B i    






   

    


  
 

  (34) 

В (34) имеем: 
1

2

0

( ).
L

i
A B i 





   (35) 
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Тогда (31) примет вид: 
1

1
0

1 ( ( 1) ) ( ),
2

L

i M i
i

a x x B i
A


   





   


     

0,1, 2,..., .p    (36) 
Согласно модели (1) необходимо оценить значения 

ix  для [ 1; ].i M     Отсюда следует, что эту мо-
дель можно представить в следующем виде: 

0

ˆ ( ),
p

ix a P i  





   1,2,3,..., .i M    (37) 

Введем обозначение: 
( ) ( ).D i P i      (38) 

Вычисление полиномов ( )D j  может быть осу-
ществлено следующим образом: 

0 1

1 1 1 2 2

( ) 1;    ( ) ( 1) / 2;
...

( ) ( ) ( ) ( / ) ( ),
где  2,3,...

D i D i i M

D i D i D i A A D i    


   

   


  
 

  (39) 

Тогда получаем: 

0

ˆ ( ),
p

ix a D i  





  1,2,3,..., .i M  (40) 

Для полиномов ( )D i  и ( )B i  справедливы соотно-
шения: 

( ) ( 1) ( );
( ) ( 1);
( 1) ( );
( 1 ) ( 1) ( ).

D i B i
D i B i M
D i M B i
D M i D i


 

 

 


 

   
   


  
    

 (41) 

Модель восстановления значений отсчетов ˆ ,ix  со-

гласно (40), требует вычисления значений полинома 
( )D j  для 1, 2,3,..., .j M  Принимая во внимание (41) 

число таких вычислений можно уменьшить в два раза.  
Сделаем тождественную замену 1 .i M i    С уче-

том (41) получаем: 

1
0

ˆ ( 1) ( ).
p

M ix a D i
  


  



    (42) 

Рассмотрим (42) как результат суммирования про-
межуточных сумм для четных и нечетных значений ин-
декса ν. В соответствии с этим введем обозначения: 

2 2( ) ( )G i a D i 


  и 2 1 2 1( ) ( ).Q i a D i 


    (43) 

Будем вычислять ( )G i  и ( )Q i  для 1,2,3,..., .i L  

При этом / 2,L M  если M четное число. В противном 

случае [ / 2] 1,L M   где [ / 2]M  целая часть резуль-

тата / 2.M  Тогда (40) и (42) соответственно примут 
вид: 
ˆ ( ) ( ),jx G j Q j     (44) 

1ˆ ( ) ( ).M jx G j Q j        (45) 

Согласно (44), вычисляем 1ˆ ,x  2ˆ ,...,x ˆ .Lx  В свою 

очередь 1ˆ ,Lx   2ˆ ˆ,...,L Mx x     вычисляем в соответ-

ствии с (45). Таким образом, получаем, что соотноше-
ния (44) и (45) сокращают объем вычислительных про-

цедур в два раза по сравнению с (37). 

Результаты численных экспериментов 
На основе рассмотренной системы ортогональных 

полиномов ( )P i  и полученного решения для вычисле-

ния весовых коэффициентов ,a  с учетом соотношений 
(44) и (45), разработано алгоритмическое обеспечение 
для вычисления оценок утраченных значений отсчетов 
дискретной последовательности. Данное алгоритмиче-
ское обеспечение реализовано в виде программного 
модуля согласно нормативным требованиям, предъяв-
ляемым к разработке программных компонент, влияю-
щих на точностные характеристики вычислительных 
процедур [27-29]. Модуль предназначен для использо-
вания в составе метрологически значимой части про-
граммного обеспечения цифровой обработки сигнала. 
Функциональным назначением модуля является вычис-
ление оценок отсчетов в режиме асинхронного управ-
ления без прерывания выполнения основной приклад-
ной программы. Численные эксперименты по исследо-
ванию функциональных возможностей модуля проводи-
лись на основе имитационного моделирования дискрет-
ной последовательности сигнала с проблемными участ-
ками отсчетов [30]. В качестве реализации исходного 
непрерывного сигнала использовалась модель следу-
ющего вида: 

1

( ) cos(2 ) .
K

k k k
k

x t A πf t  


     (46) 

В (46) значения амплитуд kA  и частот kf  задава-
лись в пределах от нуля до единицы. Они интерпрети-
ровались как нормированные соответственно по отно-
шению к наибольшей амплитуде и частоте гармоник, 
присутствующих в составе модели сигнала. Интерпре-
тация частот и амплитуд как нормированных объясня-
ется тем, что такой подход позволяет оценить возмож-
ности алгоритма восстановления в зависимости от со-
отношения их значений в составе сигнала. Значения 
начальных фаз k  изменялись в пределах от   до 
  и задавались в соответствии с равномерным зако-

ном распределения. 
Одна из реализаций модели сигнала содержала 

семь гармонических компонент, значения амплитуд, 
частот и начальных фаз которых приведены в табл. 1. 
Таблица 1. Значения ,kA  kf  и k  гармонических компонент 

k kA  kf  k  
1 0,15 0,1 -1,185905 
2 0,3 0,25 -1,210170 
3 0,5 0,35 0,054345 
4 1,0 0,5 -1,269063 
5 0,7 0,75 0,986344 
6 0,35 0,85 0,564374 
7 0,1 1 -0,548928 

В процессе проведения экспериментов, прежде все-
го, исследовалась способность алгоритма осуществлять 
восстановление значений отсчетов, когда форми- 
рование последовательности осуществлялось с пре-
дельно низкой частотой дискретизации. Для приведен-
ного в табл. 1 гармонического состава модели сигнала 
наибольшую  нормированную  частоту  равную  единице  
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имеет компонента под номером семь. Согласно теоре-
ме Котельникова, предельно низкая частота дискрети-
зации была равна 52 2,sF f   т.е. интервал дискрети-

зации был равен 0,5.t   
В частности, двадцать отсчетов последовательности 

с индексами [322;  341]i  рассматривались в качестве 

утраченных. В соответствии с этим имеем 321   и 
20.M   На рис. 1 приведен фрагмент дискретной после-

довательности с учетом места нахождения участка этих 
отсчетов. В табл. 2 представлены результаты численных 
экспериментов по восстановлению проблемного участка. 
Порядок модели восстановления p был равен десяти и 
пятнадцати. Относительная погрешность восстановления 
значений отсчетов вычислялась согласно соотношению 

ˆ( ) ,x
m m m mx x x          где 1,2,3.,..., .m M  Ее зна-

чения находятся на достаточно низком уровне в преде-
лах всего восстанавливаемого участка. Вместе с этим 
вычислялись среднеквадратическая погрешность 

2
MSE 

1

1 ˆ( )
M

x
m m

m

x x
M    



   и средняя абсолютная 

погрешность MAE 
1

1 ˆ| |.
M

x
m m

m
x x

M    


   Значения этих 

погрешностей также приведены в табл. 2. Они практи-
чески не превышают значения 0,01. 

Таким образом, результаты численных эксперимен-
тов показывают, что практическая реализация разрабо-
танного математического обеспечения позволяет осу-

ществлять восстановление утраченных значений отсче-
тов дискретной последовательности сигнала с доста-
точно низкой погрешностью. 

 
Рис. 1. Фрагмент последовательности  

с проблемным участком 

Заключение 

В статье рассмотрена задача восстановления чис-
ленных значений отсчетов на проблемных участках 
дискретной последовательности. Задача решалась ис-
ходя из того, что дискретная последовательность была 
получена в результате равномерной дискретизации не-
прерывного сигнала. Предполагается, что сигнал удо-
влетворяет условию стационарности или хотя бы дол-
жен быть квазистационарным на интервале времени его 
анализа. Разработка математического обеспечения для 
восстановления значений отсчетов сигнала осуществ-
лена на  основе аппроксимационного  метода и построе- 

Таблица 2. Результаты восстановления значений отсчетов 

m i m   mx  
Порядок модели 

p = 10 p = 15 
ˆ mx  x

m   ˆ mx  x
m   

1 322 0,8017 0,8144 0,0159 0,8077 0,0075 
2 323 0,8360 0,8227 -0,0159 0,8275 -0,0102 
3 324 -2,1218 -2,1104 -0,0054 -2,1072 -0,0069 
4 325 0,6767 0,6686 -0,0119 0,6640 -0,0187 
5 326 1,1902 1,1886 -0,0013 1,1851 -0,0043 
6 327 -0,4410 -0,4445 0,0079 -0,4470 0,0137 
7 328 -0,2645 -0,2595 -0,0190 -0,2531 -0,0431 
8 329 -0,1937 -0,1792 -0,0748 -0,1892 -0,0234 
9 330 0,5578 0,5631 0,0096 0,5588 0,0018 

10 331 0,2781 0,2700 -0,0291 0,2726 -0,0199 
11 332 -0,5900 -0,5878 -0,0038 -0,5858 -0,0072 
12 333 0,9066 0,9052 -0,0015 0,9048 -0,0019 
13 334 1,3875 1,3903 0,0020 1,3883 0,0006 
14 335 -1,5561 -1,5645 0,0054 -1,5612 0,0033 
15 336 -1,4902 -1,4857 -0,0030 -1,4822 -0,0054 
16 337 0,2288 0,2242 -0,0202 0,2235 -0,0233 
17 338 0,5473 0,5552 0,0144 0,5492 0,0036 
18 339 1,2982 1,2843 -0,0107 1,2870 -0,0087 
19 340 -1,6635 -1,6566 -0,0042 -1,6505 -0,0078 
20 341 0,0733 0,0716 -0,0233 0,0730 -0,0038 

x
 MSE  0,008104 0,007636 

x
 MAE  0,007636 0,006353 
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ния системы базисных полиномов. При этом построение 
системы базисных полиномов осуществляется в зави-
симости от порядка аппроксимирующей модели с уче-
том того, что каждый последующий полином должен 
быть ортогональным с двумя предыдущими полинома-
ми. Полученное математическое решение сокращает 
объем вычислительных процедур в два раза за счет 
возможности в процессе восстановления проблемного 
участка вычислять оценки значений отсчетов одновре-
менно как вперед, так и назад. Практическим результа-
том стала разработка алгоритмического обеспечения и 
его реализация в виде функционально завершенного 
программного модуля для вычисления оценок утрачен-
ных значений отсчетов дискретной последовательно-
сти. Модуль адаптирован для работы в режиме асин-
хронного управления в составе прикладного метрологи-
чески значимого программного обеспечения, осуществ-
ляющего цифровую обработку сигнала [31-34]. Числен-
ные эксперименты по оценке метрологических и функ-
циональных возможностей разработанного алгоритми-
ческого обеспечения и программного модуля проводи-
лись с использованием имитационного моделирования. 
Результаты экспериментов показали, что восстановле-
ние отсчетов осуществляется с достаточно низкой по-
грешностью. 
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