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Рассматривается модель неоднородной сплошной среды, пред-
ставляющая собой слоистую структуру с изменяющейся диэлек-
трической проницаемостью. Проводится моделирование матрицы 
канальных коэффициентов MIMO системы в квазинепрерывно-
слоистой неоднородной сплошной среде с турбулентностью. На 
основе лучевой теории определены электромагнитные волны, по-
падающие на апертуру приемной антенны. Рассчитана матрица 
канальных коэффициентов с учетом взаимного влияния приемных и 
передающих каналов. Рассчитывается пропускная способность 
MIMO системы с равномерным распределением мощности сигнала, 
оптимальным распределением мощности методом «водозаполне-
ния» и ортогональным пространственным кодированием. Прово-
дится анализ влияния свойств сплошной среды на пропускную спо-
собность рассматриваемых MIMO систем. 
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The paper considers a model of an inhomogeneous continuous medium, which is a layered structure with varying permittivity. The 
simulation of the channel matrix of the MIMO communication system in a quasi-continuously layered inhomogeneous continuous 
medium with turbulence is carried out. Based on the ray theory, electromagnetic waves falling on the aperture of the receiving an-
tenna are determined. The channel matrix is calculated taking into account the mutual coupling of receiving and transmitting chan-
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Введение 

Одним из основных требований к современ-
ным системам передачи информации является 
повышение пропускной способности канала. 
Однако ограниченность частотного и энергети-
ческого ресурсов не позволяют выполнять эти 
требования экстенсивным способом. Одним из 
перспективных направлений совершенствова-
ния систем передачи информации является 
технология MIMO, использующая простран-
ственное кодирование и декодирование сигна-
лов [1]. Для разработки алгоритмов пространственного 
кодирования и декодирования сигналов необходимо 
учитывать свойства среды распространения. Информа-
ция о свойствах среды используется для расчета коэф-
фициентов передачи сигнала от каждой передающей 
антенны к каждой приемной антенне. 

Особенностями распространения электромагнитной 
волны (ЭМВ) являются значительное затухание сигнала 
в среде и многолучевость, вызванная отражениями сиг-
нала от локальных неоднородностей среды, что обу-
словливает различие условий распространения для 
каждой пары передающей и приемной антенн. Широко 
известны модели, описывающие распространение ЭМВ 
в бесконечной однородной сплошной среде [2]. При ис-
следовании распространения ЭМВ в неоднородной 
сплошной среде учитывается только изменение сред-
ней мощности сигнала в точке приема [3‒6].  

Наличие неоднородностей различного происхожде-
ния существенно искажает прямолинейное распростра-
нение ЭМВ, вызывает поглощение энергии, дифракцию, 

преломление и отражение ЭМВ [3, 7, 8]. Неоднородность 
сплошных сред характеризуется зависимостью удельной 
проводимости, диэлектрической и магнитной проницае-
мостей от координат, анизотропностью, которые в том 
числе обусловливают дисперсионные свойства среды. 

При создании MIMO систем передачи информации в 
неоднородных сплошных средах необходимо размещать 
на приемной и передающей сторонах технические сред-
ства, функционирующие с учетом особенностей распро-
странения ЭМВ и соответствующего преобразования 
сигнала. Для формирования и обработки сигналов, а 
также пространственного кодирования и декодирования 
широко используются цифровые алгоритмы и устрой-
ства. Анализ характеристик канальных коэффициентов 
производится с использованием геометрических и ста-
тистических моделей, изложенных в работах [9, 10], а 
также в стандарте COST 259. Как правило, при геомет-
рическом моделировании полагается, что среда распро-
странения однородная, а многолучевость обусловлена 
локальным неоднородностями [4, 5]. Оценивание ка-
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нальных коэффициентов при распространении сигнала 
в неоднородных сплошных средах является неотъем-
лемым условием реализации преимуществ MIMO си-
стем передачи информации. 

Функционирование беспилотных аппаратов и бес-
проводных сенсоров может происходить в сплошных 
средах, значительно отличающихся своими физически-
ми, электрическими, а также химическими свойствами. 
При распространении волновых полей различной при-
роды и частоты возникает различное затухание и иска-
жение спектра. Например, на распространение ЭМВ 
могут влиять такие явления, как концентрация примесей 
в газе или жидкости, давление, температура, интенсив-
ность света, наличие потоков сплошной среды. Вместе 
с тем, актуальным является исследование свойств не-
однородных сплошных сред и процессов, протекающих 
в них, с помощью беспроводных сенсоров, анализа со-
бранных данных. Развертывание беспроводных инфор-
мационных систем в неоднородных сплошных средах 
на обширных территориях позволит существенно упро-
стить получение данных о состоянии исследуемого фи-
зического объекта, увеличить динамику поступления 
данных, разрешающую способность. Поэтому исследо-
вание свойств неоднородных сплошных сред и распро-
странение ЭМВ в таких средах является актуальной 
научно-технической задачей.  

Целью работы является повышение пропускной спо-
собности MIMO системы передачи информации с учетом 
особенностей распространения ЭМВ в неоднородных 
сплошных средах и использования свойств канальных 
коэффициентов для пространственного кодирования и 
декодирования в MIMO системах передачи информации. 

Модель канальных коэффициентов  
в неоднородной сплошной среде 

Рассмотрим MIMO систему, содержащую  TXN  

передающих антенн и RXN  приемных антенн (рис. 1). 
Коэффициенты матрицы канальных коэффициентов 

 RX TXe , 1,.., , 1,..,nmj
nmh n N m N  H  в квазинепре-

рывно-слоистой неоднородной сплошной среде харак-
теризуют изменение амплитуды и фазы ЭМВ при ее 
распространении от m -й передающей антенны к n -й 
приемной антенне. Представим неоднородную сплош-
ную среду в виде слоистой структуры с плотно прилега-
ющими друг к другу слоями вдоль плоских границ разде-
ла, в которой свойства среды изменяются в направлении 
одной из осей прямоугольной системы координат и 
остаются неизменными в плоскостях, перпендикулярных 
этой оси [11, 12]. При увеличении количества слоев K  
среду распространения ЭМВ можно считать квазинепре-
рывно-слоистой, а задача распространения ЭМВ в по-
добной структуре сводится к последовательному реше-
нию задач многократной дифракции ЭМВ на границах 
раздела двух сред [13]. Так как при малой толщине слоя 
изменение характеристик среды незначительное, то при 
моделировании матрицы канальных коэффициентов H  
в данной статье учитывается только преломленная со-
ставляющая луча в каждом из слоев, а отраженная со-
ставляющая учитывается только при полном отражении.  

 
Рис. 1.  Пространственная структура MIMO системы  

в квазинепрерывной слоистой среде 

Для расчета элементов матрицы H  определим ком-
плексную амплитуду ЭМВ, попадающей на апертуру при-
емной антенны. Рассмотрим падение плоской ЭМВ на 
границу раздела двух сред без потерь с относительными 
электрическими проницаемостями 1,  2  и магнитными 

проницаемостями 1,  2  под углом падения .  Траек-
тория распространения прямого луча в слоистой неодно-
родной сплошной среде в рассматриваемой MIMO си-
стеме определяется законом Снеллиуса, при критиче-
ском значении угла – законом отражения [3]. Поляриза-
ция ЭМВ линейная, вектор электрического поля ориенти-
рован параллельно направлению слоев. Амплитудный 
коэффициент преломления по электрическому полю в 
соответствии с формулой Френеля [3] равен: 
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преломления среды. 
Пропускательная способность среды ,T  равная от-

ношению интенсивностей преломлённой и падающей 
ЭМВ, связана с амплитудным коэффициентом прелом-
ления   соотношением [3]: 
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В соответствии с лучевой теорией [3] канальные ко-
эффициенты определяются как среднее значение ком-
плексных коэффициентов преобразования поля в каж-
дом луче 
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где M  – общее число лучей, излучаемых каждой пере-
дающей антенной, nmM  – число лучей, попадающих на 

эффективную площадь n -й приемной антенны от m -й 
передающей антенны, ( )nmT r – пропускательная способ-
ность лучей, попадающих в апертуру приемной антенны, 

( )nm r  – сдвиг фазы сигнала  в  каждом из лучей. При по- 



Цифровая Обработка Сигналов №4/2024 

 
 

5

следовательном прохождении слоев происходит ослаб-
ление мощности сигнала, в результате чего пропуска-
тельная способность равна  

   
1

, ,
K

nm nm
k

T r T r k


   (2) 

где ( , )nmT r k  – пропускательная способность k -го слоя, 
вызванная частичным отражением луча, K  – количе-
ство пройденных слоев. При преломлении на границе 
раздела двух сред всегда выполняется условие 0,   
поэтому фаза преломленной ЭМВ равна фазе падаю-
щей ЭМВ. Фазовый сдвиг сигнала каждого луча опреде-
ляется длиной пройденного пути 

 
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где ,kx  ,ky  kz  – координаты точки преломления и па-

дения луча в k -м слое для каждого из лучей от m -й 
передающей антенны к n -й приемной антенны, k  – 
длина ЭМВ в каждом слое. 

Учет взаимного влияния элементов антенной 
системы на свойства канальной матрицы 

В сплошных средах при малых электрических раз-
мерах антенной системы и близком расположении эле-
ментов наблюдается эффект взаимного влияния, кото-
рый изменяет распределение поля и характеристики 
излучения антенн. Это приводит к изменению характе-
ристик каждой отдельной антенны и всей антенной си-
стемы в целом. Взаимная связь элементов антенных 
систем передатчика и приемника влияет на канальные 
коэффициенты совокупно с особенностями распростра-
нения ЭМВ в неоднородных сплошных средах, а также 
используемым диапазоном рабочих частот. 

Рассмотрим пространственную структуру антенной 
системы (рис.1), соответствующую сильному взаимному 
влиянию, элементы которой расположены вертикально 
на малом расстоянии друг от друга. Полагаем, что в 
пределах антенной системы параметры среды изменя-
ются незначительно и принимаются равными средним 
значениям в пределах антенной системы.  

Для учета взаимного влияния элементов антенных 
систем используются матрицы взаимных импедансов 

ATXZ  и ARXZ  передающей и приемной антенных систем 
соответственно, а их расчет производится методом 
масштабирования, описанным в [14]. Величина взаимно-
го влияния в данном случае пропорциональна значению 
масштабного коэффициента .Ma  Рассматривается мо-
дельная антенная система с элементами в виде двух 
тонких вертикальных вибраторов, расположенных в од-
ной плоскости на расстояниях mnd  друг от друга. Матри-
ца взаимных импедансов модельной антенной системы 
рассчитывается методом наведенных ЭДС [15]: 
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 2 /wk    – волновое число,  

W  – волновое сопротивление среды, 2l  – длина вибра-
торов, ,mnd  , 1,...,m n N  – расстояния между вибрато-
рами модельной антенной системы. Расстояния между 
элементами модельной антенной системы рассчитыва-
ются с учетом масштабного коэффициента и геометрии 
реальной антенной системы: АС

M/ .mn mnd d a  
В работе [14] описана модель многоканальной при-

емной системы с взаимным влиянием каналов. В этом 
случае при распространении сигнала необходимо учиты-
вать преобразование сигнала, его корреляционных 
свойств не только в среде распространения, а также в 
передающем и приемном трактах. В результате модели-
рования прохождения сигнала от передатчика к приемни-
ку формируется матрица комплексных коэффициентов 
передачи сигнала от выхода передатчика к входу прием-
ника ,K  учитывающая взаимное влияние элементов 
антенных систем, особенности распространения сигнала 
в рассматриваемой неоднородной сплошной среде: 

  1 1
ΣTX L L ARX ATX

ΣRX

,WR W
W R

  


K Z Z Z HZ   (5) 

где ΣTX ,R  ΣRXR  – сопротивление излучения передающе-
го и приемного антенных элементов соответственно,  

LZ – диагональная матрица нагрузочных импедансов. 

Моделирование матрицы  
канальных коэффициентов 

Эффективность MIMO систем передачи информации 
в значительной степени определяется свойствами ка-
нальных коэффициентов [16, 17]. В данной статье рас-
сматривается модель неоднородной сплошной среды на 
плоскости. Проведено моделирование матрицы каналь-
ных коэффициентов H  для неоднородной квазинепре-
рывно слоистой среды (рис. 1), содержащей 500K   
слоев, толщиной 0,02 ,y   расположенных горизон-
тально каждый и вертикально друг над другом в диапа-
зоне координат 0, ,10 .y     

Антенная система передатчика содержит TX 2N   

антенны с координатами TX1 0,x   TX1 0,y   TX2 0,x   

TX2 0,5 .y   На приемной стороне расположена антен-

ная система, которая содержит RX 2N   антенны с коор-

динатами RX1 200 ,x   RX1 0,y  RX2 200 ,x   

RX2 0,5 .y    

Приемные и передающие антенны являются всена-
правленными. Для данного типа антенн эффективная 
длина каждой приемной антенны с учетом плоской моде-
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ли среды равна ef .
2

l 


  Вследствие уменьшающейся 

плотности среды при увеличении координаты y  в при-
емные антенны могут поступить только лучи, излучае-
мые в диапазоне углов падения 0, ,90 .     

Диэлектрическая проницаемость каждого слоя раз-
лична, а магнитная проницаемость каждого слоя одина-
кова и равна 1.   Как было отмечено ранее, свойства 
среды изменяются вдоль оси y  и неизменны вдоль оси 

.x  Неоднородность среды выражается в виде зависимо-
сти относительной диэлектрической проницаемости от 
номера слоя k  по координате :y  

     нач , 0yk k f k k       ,   (6) 

где нач  – начальное значение диэлектрической прони-

цаемости для слоя с номером 0.k   Градиент диэлек-
трической проницаемости y  отражает систематиче-
ское изменение диэлектрической проницаемости в зави-
симости от вертикальной координаты. Для учета флюк-
туаций диэлектрической проницаемости в зависимости 
от координаты, вызванных турбулентностью среды, 
функция ( )f k  задается в виде коррелированных слу-
чайных чисел с гауссовским распределением с диспер-
сией 2

  и интервалом пространственной корреляции 

.y  При моделировании дискретных слоев сплошной 
среды используется разностное уравнение для описания 
флюктуаций диэлектрической проницаемости, вызван-
ной турбулентностью: 

     1 1 2 ,y yf k f k n k
y y  

 


 
      

  (7) 

где ( )n k  – стандартные независимые гауссовские вели-
чины. В этом случае немонотонный характер изменения 
диэлектрической проницаемости в слоях рассматривае-
мой неоднородной среды приводит к многократным от-
ражениям сигнала от различных слоев, а получаемое 
многолучевое поле имеет сложную интерференционную 
структуру и резкие пространственные изменения уровня 
сигнала. Интервал пространственной корреляции y  
определяет расстояние между точками в пространстве, 
при котором коэффициент корреляции флюктуаций ди-
электрической проницаемости равен 1 / 0,368.e  . 

На рис. 2 приведен пример зависимости диэлектри-
ческой проницаемости от вертикальной координаты для 

42 10 ,y
     72 10 .y     

Моделирование канальных коэффициентов проводи-
лось в два этапа: на первом этапе рассчитываются тра-
ектории распространения сигнала в соответствии с опи-
санной выше геометрической моделью при излучении 
сигнала в диапазоне угловых координат 0, ,90    с 
шагом 0,01 .    На втором этапе производится отбор 

nmM  лучей, которые попадают на эффективную длину 

efl  каждой приемной антенны, определение их парамет-
ров в соответствии с уравнениями (2), (3) и последую-
щий расчет канальных коэффициентов в соответствии с 
уравнением (1). 

 
Рис. 2. Зависимости диэлектрической проницаемости  

от вертикальной координаты 

Анализ пропускной способности MIMO системы 

Эффективность MIMO системы передачи информа-
ции определяется средним значением пропускной спо-
собности, рассчитанным для различных конфигураций 
MIMO системы и усредненной по реализациям канальной 
матрицы. Для узкополосных сигналов, когда дисперсион-
ные свойства среды не оказывают существенного влия-
ния, достаточно задать комплексную канальную матрицу 
на центральной частоте рабочего диапазона. Пусть ка-
нальная матрица H  известна на приемной и передаю-
щей стороне MIMO системы, реализуя таким образом 
систему с замкнутой обратной связью. Представим мат-
рицу канальных коэффициентов в виде разложения по 
сингулярным числам: H , H U V  где ,U  V  – унитар-

ные матрицы,   – диагональная матрица сингулярных 

чисел , 1, , ,p p P     min ,TX RXP N N  – ранг матри-
цы канальных коэффициентов. MIMO система может 
быть представлена в виде P  независимых SISO каналов 
передачи информации, отношение сигнал-шум в каждом 
из которых зависит от величины сингулярных чисел. 
Пропускная способность MIMO системы передачи ин-
формации равна [1] 

 2
W 2

1
log 1 ,

P

p p
p

C q 


   

где pq  ‒ энергетический потенциал каждого SISO кана-

ла, которые при фиксированной мощности всех передат-
чиков рассчитываются на основе принципа «водозапол-
нения» [1]. Такое распределение мощности действует 
подобно согласованному фильтру: наибольшая мощ-
ность расходуется в каналах с высокой энергетической 
эффективностью, а меньшая мощность распределяется 
в каналы с низкой энергетической эффективностью. Для 
некоторых самых плохих каналов мощность вообще не 
выделяется. Если в MIMO системе канальная матрица на 
передающей стороне неизвестна, реализуя систему без 
обратной связи, то наилучшей стратегией будет равно-
мерное распределение мощности, а пропускная способ-

ность соответственно равна  2
E 2

1
log 1 / ,

P

p
p

C q P


   

где S

n

P
q

P
  ‒ энергетический потенциал MIMO системы, 
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2

1

Sn

S n
n

P s


  ‒ дисперсия всех передаваемых информа-

ционных символов, nP ‒ дисперсия шума в приемном 
тракте. 

Для устранения межсимвольной интерференции 
применяется ортогональное пространственно-времен-
ное блочное кодирование (OSTBC) на передающей сто-
роне и соответствующее декодирование на приемной 
стороне [19–22]. Применим пространственное времен-
ное кодирование передаваемых символов таким обра-
зом, что за L  временных слотов передается Sn  симво-
лов. В результате скорость кодирования равна 

/ .S SR n L  В работе [18] доказано, что полная скорость 

кодирования с 1SR   может быть получена только при 

TX 2,N   а при большем числе передающих антенн ско-
рость кодирования определяется дополнительным ис-
следованием. Пусть в приемных антеннах присутствует 
сигнал в виде RXN L  пространственно-временной мат-

рицы , Y HS V  где V  – RXN L  матрица гауссов-
ских шумов. Пропускная способность MIMO системы при 
использовании OSTBC равна [21], [22]: 

2
OSTBC 2

TX

log 1S
qC R

N
 

  
 

H . 

Пропускная способность OTSBC не превышает про-
пускной способности, полученной Телатаром [23]: 

OSTBC W ,C С  где равенство пропускных способностей 

достигается при 1SR   и TX RXrank min( , ) 1.N N H  
На рис. 3 приведены зависимости эргодической про-

пускной способности от энергетического потенциала, 
полученной усреднением W ,C  EC  и OSTBCC  по 1000 ре-

ализациям канальной матрицы при 0,002,y    

0,05,   1 ,y     0,02 .y   Сплошной линией 

обозначен график E ( ),C q  пунктирной линией обозначен 

график OSTBC ( ),C q  штрих-пунктирной линией обозначен 

график W ( ).C q  

На рис. 4 приведены зависимости пропускной спо-
собности в турбулентной среде от величины ,  полу-

ченной усреднением W ,C  EC  и OSTBCC  по 1000 реали-

заций, при 42 10 ,y
     1 ,y     72 10 ,y  

80q   дБ. 
В случае взаимного влияния каналов передающей и 

приемной систем в выражениях для расчета пропускной 
способности системы используется матрица комплекс-
ных коэффициентов передачи сигнала от выхода пере-
датчика к входу приемника K (5). На рис. 5 приведены 
зависимости пропускной способности от величины мас-
штабного коэффициента ,Ma  полученные усреднением 

по 1000 реализаций W ,C  EC  и OSTBC .C  Моделирование 
проведено   для    неоднородной    среды,    содержащей 

500K   слоев, толщиной 0,018 ,y   расположенных 
горизонтально каждый и вертикально друг над другом в 
диапазоне координат 0, ,9 ,y    80q   дБ. Диэлек-

трическая проницаемость каждого слоя флюктуирует в 
соответствии с законом (6), (7), а магнитная проницае-
мость каждого слоя одинакова и равна 1.   Для описа-
ния зависимости от координаты y  диэлектрической про-
ницаемости среды используется описанная выше флюк-
туационная модель для турбулентной среды с парамет-
рами: нач 5,   72 10 ,

   42 10 ,y     .y    Ан-

тенная система передатчика содержит TX 2N   антенны 

с координатами TX1 0,x   TX1 0,y   TX2 0,x   TX2 0,5 .y   
На приемной стороне расположена антенная система, 
которая содержит RX 2N   антенны с координатами 

RX1 200 ,x   RX1 0,y   RX2 200 ,x   RX2 0,5 .y   Сопро-
тивления излучения передающего и приемного антенных 
элементов равны сопротивлению одиночного вибратора 
в исследуемой среде ΣTX ΣRX 14,3R R   Ом. Матрица 

нагрузочных импедансов L

14,3 0
0 14,3

 
  
 

Z  Ом. 

 
Рис. 3. Зависимость пропускной способности  

от энергетического потенциала MIMO системы 

 
Рис. 4. Зависимости пропускной способности от величины 

флюктуаций диэлектрической проницаемости 

Заключение 
Проведенные исследования компьютерной модели 

неоднородной сплошной среды показали сложный ха-
рактер распространения ЭМВ от точки излучения до 
апертуры приемной антенны. Наличие неоднородности 
и турбулентности сплошной среды значительно умень-
шает  мощность   принимаемого  сигнала.  В  результате 
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Рис. 5. Зависимости пропускной способности от величины масштабного коэффициента 

моделирования рассчитаны амплитуда и фаза сигнала 
на выходе приемных антенн, расположенных в различ-
ных точках пространства. 

На основе расчетов получены матрицы канальных 
коэффициентов, позволившие провести анализ про-
пускной способности MIMO системы передачи инфор-
мации. Наибольшая пропускная способность обеспечи-
вается при распределении мощности сигнала между 
собственными лучами по принципу «водозаполнения»,  
что дает выигрыш 2…3 дБ по сравнению с другими ва-
риантами MIMO систем. Применение OSTBC незначи-
тельно уменьшает пропускную способность, а проигрыш 
в отношении сигнал-шум по сравнению с равномер- 
ным распределением мощности составляет около 
0,5…0,7 дБ. 

Наличие флюктуаций диэлектрической проницаемо-
сти 70...2 10

   незначительно уменьшает пропуск-
ную способность. Зависимость пропускной способности 
от масштабного коэффициента является немонотонной 
и показывает существенное его влияние на пропускную 
способность. Учитывая ранее полученные результаты 
[24], можно утверждать, что и в неоднородной сплошной 
среде оптимизация пространственной структуры может 
быть важным резервом повышения пропускной способ-
ности MIMO систем с взаимным влиянием каналов. 

Работа выполнена при поддержке гранта Россий-
ского научного фонда 24-29-00850, https://rscf.ru/en/ 
project/2429-00850/ в Рязанском государственном ра-
диотехническом университете имени В.Ф. Уткина. 
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связи, мобильной связи, радиодоступа, цифрового вещания и оборудо-
вания для электромобилей. 

Основные направления деятельности нашей компании: 
 Разработка ПО. Разрабатываем специализированное компьютерное программное обес-

печение. 
 Разработка для ПЛИС. Разрабатываем сложные функциональные блоки цифровой об-

работки сигналов. 
 Научные исследования. Проводим исследования в области интересующих Вас задач. 
 Разработка решений в области связи. Решаем поставленные Вами задачи в области 

связи, радиодоступа и телерадиовещания. 
 Действия с интеллектуальной собственностью. Осуществляем проведение патентных 

исследований, составление заявок на патенты на изобретения и полезные модели, а так-
же на свидетельства на программы для ЭВМ и баз данных. 

 Обучение пользователей. Проводим обучающие семинары и тренинги. При необходи-
мости возможно проведение углубленного повышения квалификации. 

 Консультации. Осуществляем консультативную деятельность в области компьютерных 
технологий и систем связи. 

Наши клиенты: ООО «Т8», АвтоВАЗ, LADA Sport, ООО «3В-Сервис», ООО «Цифровые ре-
шения», ООО «НПФ «Сад-Ком», ООО НПП «ТЕПЛОВОДОХРАН», ООО «Силовая электрони-
ка», МТУСИ, МФТИ и др. 

Контакты:  
Адрес: 390000, г. Рязань, ул. Каширина, д.1т, 
второй этаж, офис 1  
Тел.: +7(995)540-75-03 
E-mail: info@labsphera.ru 
Сайт: https://labsphera.ru/ 

 

 
 


