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В аппаратуре импульсных РСА с целью подавления эхосигналов, 
принимаемых боковыми лепестками диаграммы направленности 
антенны, как правило, используются модулирующие ансамбли сиг-
налов с фазово-кодовой модуляцией (ФКМ). Они характеризуются 
высокой кросскорреляционной развязкой между элементами. Вме-
сте с тем, существует проблема формирования аналогичных сиг-
налов с линейной частотной модуляцией (ЛЧМ). Предложен вари-
ант формирования ансамблей из составных сигналов с ЛЧМ, кото-
рым присвоена аббревиатура С-ЛЧМ. Длительность импульса раз-
бивается на произвольно задаваемое число частей, в каждой из 
которых формируется сигнал с ЛЧМ. Ширина полосы частот во 
всех интервалах одинакова, но знаки скорости ее изменения 
(нарастания или убывания) в соседних интервалах различны. Полу-
чены выражения для расчета авто- и взаимных (кросс-) корреляци-
онных функций таких сигналов и приведены примеры с наглядными 
графическими иллюстрациями, подтверждающие возможность 
реализации ансамблей модулирующих сигналов с С-ЛЧМ, характе-
ризующихся высокой кросскорреляционной развязкой, до минус 
30…40 дБ. Кроме того, получено явное выражение для взаимной 
корреляционной функции традиционных сигналов с ЛЧМ, характе-
ризующихся различными знаками скорости изменения частоты, и с 
его помощью проанализирована динамика зависимости от базы 
корреляционной развязки таких сигналов. 
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Введение 

В импульсных радиолокаторах с синтезиро-
ванной апертурой (РСА) на вход приемника 
попадают эхосигналы, отраженные не только от 
области земной поверхности, облучаемой 
главным лепестком диаграммы направленности 
(ДН) антенны, но и от ее боковых лепестков  
[1] – [4]. Эти сигналы называют кратными поме-
хами. Маркируя импульсы передатчика систе-
мой ортогональных сигналов, например, с фа-
зово-кодовой модуляцией (ФКМ), удается путем 
обработки в приемнике каждого импульса пе-
редатчика соответствующим ему согласован-
ным фильтром подавить сигналы, принимае-
мые по нескольким (соседним с главным) угло-
местным боковым лепестком ДН антенны [5]. 
Данный эффект возникает из-за наличия кор-
реляционной развязки между сигналами, излу-
чёнными в соседних периодах зондирования. 
Что касается эхосигналов, принимаемых по 
азимутальным боковым лепесткам ДН антенны, 
то они фильтруются по доплеровской частоте. Ме-
тоды подавления этого типа кратной помехи здесь не 
рассматриваются. 

Наряду с сигналами с ФКМ в аппаратуре космиче-
ских РСА часто применяются сигналы с линейной ча-

стотной модуляцией (ЛЧМ). Внутриимпульсная частота 
этих сигналов может изменяться как по нарастающему 
закону (от меньшего значения к большему), так и по об-
ратному – от большего значения к меньшему. Закон из-
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менения задается знаком коэффициента, определяю-
щего скорость изменения частоты (КИЧ). При большом 
значении базы (произведения полосы частот сигнала на 
длительность импульса) эти два варианта сигнала с 
ЛЧМ станут обладать высоким уровнем взаимной кор-
реляционной развязки [3]. Однако для подавления крат-
ным помех, принимаемых по нескольким боковым ле-
песткам ДН антенны, двух развязанных сигналов, есте-
ственно, будет недостаточно. Поэтому в литературе 
предложено формирование сигналов с ЛЧМ, имеющих 
усложненную внутреннюю структуру. 

Так, в [6] используются последовательности, в кото-
рых каждый элемент разделен на два интервала с раз-
личающимися от импульса к импульсу значениями дли-
тельности и КИЧ. Эти так называемые V-сигналы с ЛЧМ 
описаны в базовой монографии [7]. Еще один вариант 
структуризации импульсов с ЛЧМ по симметричной схе-
ме с частотной зависимостью, напоминающей по форме 
букву W, предложен в [8]. Импульс сигнала с ЛЧМ раз-
бивается уже не на две, а на четыре части с чередую-
щимся знаком скорости изменения частоты в соседних 
интервалах. Авторы показали, что два W-сигнала с раз-
личающимися длительностями интервалов их разбие-
ния на части обладают определенным уровнем взаим-
ной корреляционной развязки, который зависит от сте-
пени различия разбиения на части длительности полно-
го импульса и от базы ЛЧМ сигнала.  

Мы предлагаем обобщить концепцию разбиения 
сигнала с ЛЧМ не на две или четыре, а на произвольное 
число частей с чередующимся знаком КИЧ в каждом из 
них. Кроме того, предлагаем дополнительно ввести ин-
вертированный вариант каждого такого сигнала, в кото-
ром знаки КИЧ во всех частях станут противоположны-
ми знакам КИЧ во всех частях исходного импульса. 
Назовем эту пару сигналов составными ЛЧМ сигналами 
и введём аббревиатуру С-ЛЧМ. Исходный и инвертиро-
ванный по знаку КИЧ сигналы с С-ЛЧМ оказываются 
корреляционно развязанными так же, как и исходные 
ЛЧМ сигналы с противоположными знаками КИЧ. 

При большом значении базы сигналов с С-ЛЧМ, раз-
личающихся разбиением их длительности на части, 
удается добиться между ними хорошей корреляционной 
развязки. В результате возникает возможность форми-
рования в передатчике РСА достаточного для практиче-
ских целей ансамбля корреляционно развязанных сиг-
налов. Он может служить альтернативой ансамблям, в 
которых используется маркировка излучаемых импуль-
сов сигналами с ФКМ.  

Цель работы: 1) исследование влияния значения ба-
зы на уровень взаимной корреляционной развязки тра-
диционных сигналов с ЛЧМ, характеризующихся раз-
личными знаками коэффициента, определяющего ско-
рость изменения частоты; 2) разработка методики фор-
мирования составных сигналов с ЛЧМ; 3) анализ их ав-
то- и взаимных корреляционных функций; 4) построение 
ансамблей, состоящих из сигналов с С-ЛЧМ, позволяю-
щих обеспечить в аппаратуре РСА подавление эхосиг-
налов угломестных кратных помех, принимаемых по 
боковым лепесткам ДН антенны. 

Корреляционная развязка традиционных сигналов  
с ЛЧМ, различающихся знаком КИЧ 

Комплексная огибающая импульсного нормированно-
го по амплитуде сигнала с линейной частотной модуля-
цией и длительностью T может быть представлена как 

2

( ) rect( , ) j Kts t T t e    (1) 
где K = f/T – коэффициент, определяющий скорость 
изменения частоты (крутизна частотной модуляции), f – 
ширина полосы частот сигнала, t – текущее значение 
времени, знак  определяет направление изменения 
частоты – ее нарастание или убывание. Функция rect(T,t) 
по определению равна единице на интервале времени 
|t|  Т/2 и нулю в других точках. Нормируем аргументы 
функции rect(T,t) к T, а степень экспоненты к T2 

2 2 2( / )( ) rect( , ) rect(1, )j KT t T j Bts t T t e t e        (2) 
где t = t/T, а B = fT = KT2 – база ЛЧМ сигнала, которая 
равна ширине его полосы частот f, умноженной на дли-
тельность импульса T. В дальнейшем будем использо-
вать нормированное время, и штрих станем опускать.  

Определим автокорреляционную функцию (АКФ) сиг-
нала с традиционной ЛЧМ 
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Второй сомножитель в правой части (3) это функция 
sinc(x) = sin(x)/x.  

Теперь определим кросс-корреляцию ЛЧМ сигналов с 
противоположными знаками коэффициента k 
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Знак тильда означает, что операция корреляции вы-
полняется между исходным сигналом и сигналом, имею-
щим противоположный знак коэффициента k. Используя 
символьный процессор математического пакета MathCAD 
находим аналитическое выражение для ( )I   
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где 
2

0

2erf( )
x

tx e dt


   – гауссова функция ошибки (про-

цедуры ее вычисления имеются во многих программных 
продуктах). Выразим в децибелах функции ( )I   и 

( ) ( ) ( )I I I        
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Нормируем также суммарную функцию ( ), дБI   сле-
дующим образом 

( ),дБ ( ), дБ (0), дБI I I       .  (7) 
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На рис. 1 приведены зависимости от нормированного 
к длительности импульса времени корреляционной и 
кросс-корреляционной функции ЛЧМ сигнала при не-
скольких значениях базы и зависимость функции ( )I   от 

базы сигнала в момент времени  = 0. Приведенные на 
рис. 1 зависимости свидетельствуют о том, что при уве-
личении значения базы сигнала ЛЧМ ширина нормиро-
ванной автокорреляционной функции уменьшается. Что 
касается кросс-корреляционной функции, то ее ширина 
практически постоянна, но уровень снижается на 10 дБ 
при каждом возрастании базы в 10 раз. Этот вывод 
наглядно подтверждается зависимостями ( ),I   приве-
денными на рис. 2. Они аналогичны тем, которые можно 
найти в статье [3]. 

В целом, можно отметить, что, вообще говоря, сиг-
налы с ЛЧМ, имеющие противоположные знаки крутиз-
ны изменения частоты, не являются ортогональными. 
Степень их ортогональности возрастает при увеличении 
базы. С геометрической точки зрения, два непарал-
лельных вектора s1 и s2 можно ортогонализировать, 
выполняя следующую операцию 
s21=s2–(s2s1

н)s1
н и s12=s1–(s1s2

н)s2
н,  (8) 

где верхний индекс (н) означает выполнение нормировки 
вектора. В работе [9], в частности, предложен следую-
щий упрощенный вариант повышения ортогональности 
двух типов сигнала с ЛЧМ s21(t) = s2(t) – s1(t), где 
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с помощью символьного процессора определим кросс-
корреляционную функцию 
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Результаты расчета представлены на рис. 3, где 
цифрами 1 и 2 обозначены кривые зависимости кросс-
корреляционных функций, полученных до введения по-
правки и после нее. Видим, что внесение поправки при-
водит к существенному уменьшению значения I(B,) за 
исключением узкой временной области –B–1    B–1, в 
которой она ведет себя асимптотически, как  

 2sinc
( , ) ~ 10 log , дБ

2
B

I B
B

  
  

  
.  (12) 

 
 а) б) в) 

Рис. 1. Зависимость от нормированного к длительности импульса времени корреляционной – а)  
и кросс-корреляционной функции ЛЧМ сигнала – б) при нескольких значениях  базы – б),  

зависимость функции ( )I   от базы сигнала в момент времени  = 0 – в) 

 
 а) б) 

Рис. 2. Зависимость суммарного сигнала, полученного при выполнении процедур авто- и кросс-корреляции,  
от нормированного времени при двух значениях базы сигнала с ЛЧМ В = 50 – а) и В = 5000 – б) 
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 а) б) в) 

Рис. 3. Зависимость кросс-корреляционной функции от нормированного к длительности импульса времени  
с учётом поправочного коэффициента  при значении базы B = 500 – а) и B = 5105 – б); зависимость функции I(B)  

от базы сигнала в момент времени  = 0 – в) 

Составной сигнал с ЛЧМ  
и его корреляционные характеристики 

Иллюстрация зависимости частоты от времени в 
импульсе традиционного и составного сигнала с ЛЧМ 
дана на рис. 4. Цветом выделены отдельные части им-
пульса. В традиционном сигнале с ЛЧМ имеет место 
монотонный характер изменения частоты по всей дли-
тельности импульса (ее возрастание либо убывание). В 
сигнале С-ЛЧМ монотонность сохраняется только на 
каждом отдельном временном интервале. Аналогично 
традиционному варианту на каждом интервале возмож-
но задание двух различных знаков скорости изменения 
частоты. Длительность T сигнала С-ЛЧМ произвольным 
образом разделяется на N парциальных частей, и фор-
мируется массив M = (t0, t1,…, tN–1)T, где tn норми-
рованная к T длительность n-го интервала. Сумма tn 
должна равняться единице. Отметим также, что ширина 
полосы частот f этого сигнала на каждом временном 
интервале сохраняет постоянной значение, однако база 
изменяется, а именно, Bn = fTtn = Btn Скорость из-
менения частоты на n-м интервале Kn = B/(Ttn). 

 
Рис. 4. Зависимость частоты от времени в импульсе  

с традиционным монотонным характером ее изменения  
по всей длительности (пунктир и штрих-пунктир) и состав-
ной сигнал с ЛЧМ (сплошные линиями). Точечными линиями 
показана зависимость частоты от времени в составном 

сигнале, в каждом фрагменте которого знак скорости  
изменения частоты противоположен к тому,  

который изображен сплошной линией 

Нормированные к длительности импульса T центры 
парциальных интервалов определяются следующим 
образом  
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Зависимость суммарного сигнала от нормированного 
времени t = t/T 
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Переходя к реальному времени, получим 
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Взаимная корреляция двух комплексных импульсных 
сигналов s1(t) и s2(t), имеющих одинаковую длительность 
T, определяется следующим образом 

/2
*

1,2 1 2
/2

( ) ( )s ( )
T

T

I s t t dt


   
.  (16) 

Если s1(t) = s2(t), то получим автокорреляционную 
функцию.  

При обработке цифровых сигналов с помощью быст-
рого преобразования Фурье реализуется их свёртка в 
частотной области. В этом случае интеграл берется от 
произведения первого сигнала на второй из них, который 
инвертирован (перевернут), задержан по времени и ком-

плексно сопряжен, т.е. *
2 2( , ) ( )s t s t     
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1,2 1 2
/ 2

( ) ( ) ( )
T

T

I s t s t dt


    .  (17) 

В рассматриваемом случае, когда используется со-
ставной сигнал с ЛЧМ, для его обращения выполняется 
следующая процедура. Пусть первому из них соответ-
ствуют массивы M1 и C1, а второму – M2 и C2. Вначале 
инвертируется массив M2 и формируется обращенный 
массив 2 1 2 1 0( , ,..., , ) .T

N Nt t t t     M  Затем по форму-
ле (13) рассчитывается соответствующий ему массив 

2C  и, наконец, определяется инвертированный и ком-
плексно сопряженный сигнал (нижнюю индексную цифру 
2 для краткости записи опускаем) 
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На рис. 5 приведена иллюстрация процедуры инвер-
тирования и комплексного сопряжения исходного со-
ставного сигнала с ЛЧМ при нечетном и четном числе 
его фрагментов. 

 
Рис. 5. Иллюстрация инвертирования  

и комплексного сопряжения исходного составного сигнала  
с ЛЧМ при нечетном и четном числе его фрагментов.  

Слева схема исходного сигнала, а справа – инвертированного 
и пофрагментно комплексно сопряженного 

В качестве примера на рис. 6 приведена зависи-
мость от времени мнимой составляющей импульсного 
составного сигнала с ЛЧМ при М = [0.1,0.2,0.3,0.4]T, 
Т = 1 и B = 100. На рис. 7. изображен модуль спектра 
этого сигнала. Расчет спектральных и корреляционных 
функций сигналов с ЛЧМ и С-ЛЧМ с помощью приве-
денных выше соотношений оказывается трудоемкой в 
вычислительном отношении процедурой, и, следова-
тельно, затратной по времени. Поэтому ее обычно вы-
полняют с использованием прямого и обратного быст-
рого преобразования Фурье (БПФ) [10].  

 
Рис. 6. Зависимость от времени мнимой составляющей  

импульсного составного сигнала с ЛЧМ  
при М = [0.1, 0.2, 0.3, 0.4]T, Т = 1 и B = 100 

На первом этапе комплексные сигналы в интервале 
от (–Т,Т) дискретизируются по времени с шагом 
t = (osf)–1 = Т/(osB). В результате этого формирует-
ся массив отсчетов времени T длиной N = 2osB, os – 
коэффициент передискретизации. Для каждого отсчет-
ного значения времени рассчитывается значение сиг-
нала, и тем самым формируется массив s. Его спектр S 
определяется с помощью БПФ, процедуры выполнения 
которого имеются в библиотеках многих современных 
программных продуктов, а именно S = CFFT(s). Авто-
корреляционную функцию (АКФ) находят, выполняя  
обратное БПФ от произведения спектра сигнала на  
его комплексно сопряженное значение I = ICFFT(SS*).  
Взаимную корреляционную функцию массивов отсчета 
двух сигналов s1 и s2 с С-ЛЧМ, определяют, как 

1,2 1 2 1 2ICFFT( ) ICFFT[CFFT( ) CFFT( )], I S S s s    где 

верхний знак тильда означает инверсию временных от-
счетов сигнала, а звездочка – комплексное сопряжение, 
  – поэлементное перемножение компонентов векторов. 

 
Рис. 7. Модуль спектра составного сигнала с ЛЧМ,  

изображенного на рис. 6 

Результаты расчетов 
Сформируем ансамбль, состоящий из N = 10 корре-

ляционно развязанных сигналов с С-ЛЧМ. Пусть норми-
рованная длительность импульса из этого ансамбля 
разбивается на две инвертированные по знаку КИЧ ча-
сти. И пусть нормированные к длительности импульса их 
первые половины принимают значения 0.2, 0.4, 0.6 и 
0.8. Знаки соответствуют знаку при коэффициенте ско-
рости изменения частоты в сигнале с ЛЧМ. Добавим к 
ним еще два сигнала, которые соответствуют исходному 
сигналу с ЛЧМ (с положительным и отрицательным зна-
ком КИЧ, но без разбиения длительности импульса на 
части). Поставим ему в соответствие индекс i = 0. 

Введем следующие обозначения: iI  – автокорреля-

ция i-го сигнала, i
I  – взаимная корреляция сигнала и 

его альтернативы с противоположным знаком скорости 
изменения частоты, ,

,i k
 I  – взаимная корреляция всех 

различающихся пар сигналов, входящих в ансамбль. С 
целью нормировки положим Т = 1, а базу сигнала при-
мем равной В = 1000 (такую базу, например, будет 
иметь сигнал с длительностью 20 мкс и шириной полосы 
частот 50 МГц). Результаты расчета представлены на 
рис. 8. Видим, что в наихудшем случае значение корре-
ляционной развязки , 1i iI  не превысит минус 21 дБ. 

Снова положим Т = 1, но теперь зададим В = 10000 
(этому случаю соответствует, например, снова длитель-
ность импульса 20 мкс, но ширина полосы частот сигна-
ла с ЛЧМ 500 МГц). Уменьшая вдвое интервал разбие-
ния импульса на части, а, значит, увеличивая общую 
длину ансамбля N = 20, получим результат, представ-
ленный на рис. 9. Видим, что в худшем случае значение 
корреляционной развязки окажется на уровне минус 
30 дБ. Уменьшение числа элементов разбиения позво-
лит дополнительно улучшить развязку между ними. Уве-
личивая число интервалов разбиения импульсов пере-
датчика можно формировать дополнительные сигналы с 
С-ЛЧМ, которые будут характеризоваться высокой кор-
реляционной развязкой, что также позволит увеличить 
длину ансамбля. 

Наконец, на рис. 10 приведены зависимости от нор-
мированного времени авто и взаимной корреляции двух 
сигналов с ЛЧМ и С-ЛЧМ. Длительности двух сигналов с 
С-ЛЧМ разбиты по времени на различное число частей. 
Первый из них характеризуется разбиением на 5 состав-
ных  частей (0.1,0.15, 0.2,0.25,0.3),  второй – на  две  со- 
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Рис. 8. Зависимости от нормированного времени авто и взаимной корреляции сигналов ансамбля сигналов  

с ЛЧМ и С-ЛЧМ, состоящего из 10 элементов 

 
Рис. 9. Зависимости от нормированного времени авто и взаимной корреляции сигналов ансамбля сигналов  

с ЛЧМ и С-ЛЧМ, состоящего из 20 элементов при В = 10000 

ставные части (0.4,0.6), база сигналов по-прежнему 
B = 10000. Видим, что и в этом случае корреляционная 

развязка двух сигналов не превышает минус (почему) 
30 дБ, причем, с хорошим запасом. 
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Рис. 10. Зависимости от нормированного времени авто и взаимной корреляции сигнала ЛЧМ  

и двух сигналов с С-ЛЧМ, различающихся числом разбиения длительности импульсов при В = 10000 

Заключение 

Существует возможность реализации ансамблей 
сигналов с высоким уровнем взаимной корреляционной 
развязки между их отдельными элементами за счет ис-
пользования составных сигналов с линейной частотной 
модуляцией. Разработана методика формирования и 
анализа характеристик ансамблей таких сигналов. Эти 
сигналы наравне с сигналами с фазово-кодовой моду-
ляцией могут использоваться в аппаратуре РСА для 
подавления кратных помех по дальности, принимаемых 
по боковым лепесткам диаграммы направленности ан-
тенны. Расчётным путём установлено, что уровень вза-
имокорреляционной развязки для ансамблей подобных 
сигналов составляет не менее 30 дБ. 

Работа выполнена в рамках государственного за-
дания Минобрнауки России, номер темы FSFF-2023-
0005. 
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