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Применение линейно-частотно модулированных (ЛЧМ) сигналов 
в радиолокационных станциях непрерывного излучения с множе-
ственными входами и множественными выходами (FMCW MIMO 
РЛС) вызывает интерес в научной области радиолокации уже около 
десяти лет. Известен подход с обеспечением ортогональности 
между различными сигналами с передающих антенных элементов 
за счет введения дополнительной быстрой фазокодовой манипуля-
ции ЛЧМ импульсов в соответствии с двоичными псевдослучайны-
ми последовательностями. В данной статье показаны результаты 
исследования FMCW MIMO РЛС с быстрой фазокодовой манипуля-
цией, в которых показано основное ограничение в части высокого 
уровня боковых лепестков в частотной области для средней и 
большой дальности работы РЛС. По результатам исследования 
предложен новый подход в реализации сглаживания фазовой мани-
пуляции, который позволил реализовать сглаживание манипуляции 
без аппаратных усложнений РЛС. 
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The application of linear frequency modulated (chirp) signals in continuous wave multiple input multiple output (FMCW MIMO) ra-
dars has been of interest in the scientific field of radar for about a decade. A known approach is to ensure orthogonality between dif-
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Введение 

Радиолокационные системы MIMO (multiple-
input-multiple- output) стали очень востребованы 
в связи с возникшей потребностью в малогаба-
ритных и дешевых устройствах, способных об-
наруживать и сопровождать малоразмерные 
БПЛА. Экономичность в таких устройствах до-
стигается за счет идеи виртуальной антенной 
решетки, которая имеет размерность N на M, 
где N – количество физических передатчиков, а 
M – количество физических приемников, при 
этом в пространство излучается N ортогональ-
ных сигналов, которые выделяются в каждом из 
M приемников. Это преимущество сопровождают-
ся и некоторыми недостатками: MIMO РЛС менее энер-
гоэффективны [1] (так как имеют меньше физических 
элементов), а процесс обработки данных требует боль-
ших вычислительных затрат и может давать некоторые 
дополнительные артефакты.  

При нашей первой попытке реализовать концепцию 
MIMO РЛС мы разработали устройство с 32 передатчи-
ками и 16 приемниками (рис. 1) [2]. В нем использова-
лась квазинепрерывные сигналы с BPSK модуляцией, 
следовательно, длительность передающего сигнала 
была намного больше, чем максимальная временная 
задержка отклика от цели на расстоянии. Благодаря 
большому размеру передаваемых псевдослучайных 
последовательностей их кросскорреляционные свой-
ства оказались более чем достаточными для постав-
ленных целей, а обработка частичной корреляции обес-
печила высокую доплеровскую чувствительность. Глав-
ным и, к сожалению, решающим недостатком этой ар-
хитектуры является высокая вычислительная слож-

ность, поскольку поток необработанных отсчетов данных 
составлял 1 Гб в секунду, и эти данные невозможно бы-
ло обработать в реальном времени на приемлемом обо-
рудовании. 

 
Рис. 1. MIMO РЛС на базе BPSK сигналов 

Таким образом, целью исследования является сни-
жение вычислительной сложности алгоритмов цифровой 
обработки сигналов в данной РЛС, а задачами исследо-
вания являются анализ существующих подходов обра-
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ботки, применяемых в РЛС схожего класса, разработка 
и исследование модернизированного подхода форми-
рования и обработки сигналов. В качестве основного 
пути был выбран переход на технологию РЛС непре-
рывного излучения с линейной частотной модуляцией 
(FMCW). В радиолокации данный подход позволяет на 
порядки уменьшить максимальную частоту сигнала на 
входе аналого-цифровых преобразователей (АЦП), что, 
соответственно, уменьшает на порядки информацион-
ный поток и вычислительную сложность алгоритмов 
цифровой обработки сигналов.  

Классический FMCW не подходит для применения в 
MIMO, и требует дополнительного обеспечения воз-
можности формирования N различных ортогональных 
сигналов. В последнее время исследуются различные 
способы обеспечения этой ортогональности [3]. 

Одним из самых простых подходов является исполь-
зование мультиплексирования с временным разделени-
ем каналов (TDM) [4, 5]. Он не вносит искажений, вы-
званных автокорреляционными и кросскорреляционны-
ми свойствами сигналов, и имеет преимущества в вы-
числительной производительности, но обладает худ-
шими доплеровскими свойствами и обычно оказывается 
наименее энергоэффективным. 

Следующим подходом является мультиплексирова-
ние ЛЧМ сигналов с частотным разделением (FDM) [6]. 
В этом случае каждый передатчик генерирует ЛЧМ сиг-
нал в своей непересекающейся полосе частот (также 
могут использоваться противоположные направления 
модуляции [7]). Несмотря на то, что эта технология пре-
одолевает недостатки TDM, она значительно усложняет 
конструкцию аппаратуры, поскольку требует наличия 
нескольких трактов формирования несущей частоты 
или высокоскоростных цифро-аналоговых преобразова-
телей (ЦАП) и АЦП. Кроме того, данный способ разде-
ления передающих каналов требует большей полосы и 
частоты дискретизации приемников без получения до-
полнительного разрешения по дальности. В контексте 
модернизации существующей РЛС данный способ яв-
ляется наименее предпочтительным ввиду необходи-
мости существенных аппаратных изменений. 

Таким образом, наиболее перспективным способом 
разделить сигналы без временного разделения, остава-
ясь в той же полосе пропускания, является использова-
ние ЛЧМ сигналов с дополнительной фазокодовой ма-
нипуляцией в соответствии с ортогональными двоич-
ными псевдослучайными последовательностями. Струк- 
тура одного передающего канала в таком случае пред- 
ставлена на рис. 2. Хотя некоторые кодовые последова-
тельности, такие как полифазные последовательности, 
могут дать дополнительные преимущества в авто- и 
кросскорреляционных свойствах сигналов, они также 
требуют и дополнительных аппаратных усложнений. 

Для реализации такого подхода существует два ос-
новных способа. 

1. Способ быстрой манипуляции, при котором пере-
ключение фазы происходит несколько раз на протяже-
нии всего ЛЧМ импульса (под импульсом здесь и далее 
подразумевается один цикл изменения частоты между 
крайними значениями) [8-9]. В этом случае ЛЧМ им-

пульс может иметь очень низкий коэффициент девиации 
частоты, что позволяет использовать АЦП с меньшей 
частотой дискретизации. Помимо стоимости и простоты, 
такие микросхемы имеют меньшее количество выходов, 
поэтому одна микросхема ПЛИС может поддерживать 
большее количество АЦП. 

 
Рис. 2. Упрощенная схема одного канала передачи  

с представлением вида сигнала в ключевых точках схемы 

2. Способ медленной манипуляции, при котором фа-
за переключается только в начале каждого ЛЧМ импуль-
са [3]. Для накопления полной последовательности 
необходимо передать достаточно большое количество 
ЛЧМ импульсов, поэтому коэффициент девиации часто-
ты и соответствующая частота дискретизации АЦП 
должны быть в несколько раз больше. 

Оба этих способа экономичны и обладают высокой 
вычислительной эффективностью, что делает их весьма 
привлекательными для внедрения в существующие кон-
струкции. Также следует отметить, что в некоторых раз-
работках используются комбинации различных подходов 
[10], чтобы преодолеть присущие им недостатки. 

Подход к использованию фазокодовой манипуляции 
ЛЧМ импульсов является довольно новым, и исследова-
ния в данной области являются актуальными. В опубли-
кованных работах не освещены в должной мере точные 
характеристики производительности, достижимые при 
использовании различных подходов. В рамках данной 
работы мы исследуем возможность построения MIMO 
РЛС на базе FMCW с быстрой фазокодовой манипуля-
цией с следующими базовыми ограничениями системы: 

– в системе не должно быть физических микросхем 
ЦАП; 

– предпочтительно использовать только однокомпо-
нентный модулятор ПЧ; 

– все вычисления должны выполняться на ПЛИС, чи-
пах SoC или SoM. 

Быстрая фазокодовая манипуляция 

Главным очевидным недостатком такого способа яв-
ляется то, что отклик от цели будет сдвинут по времени, 
следовательно, будут образовываться дополнительные 
искажения, связанные с пересечением фрагментов сиг-
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налов с противоположенными фазами. Исходя из 
начального условия способа, задержка переключения 
фазы должна быть намного больше максимальной за-
держки отклика от цели. Это позволяет упростить обра-
ботку путем применения коэффициента фазовой ком-
пенсации для каждого передающего канала в каждом 
приемном канале для всей длительности одного фазо-
вого состояния. Однако цели на разных расстояниях 
имеют не только разные значения частот откликов, но и 
разные временные задержки. Это означает, что не су-
ществует универсального смещения времени окна 
накопления, которое удовлетворяло бы всем возмож-
ным диапазонам дальностей. Этот зазор между смеще-
ниями, в котором фаза не обязательно совпадает, при-
водит к искажениям в виде боковых лепестков в частот-
ной области, которые соответствуют боковым лепест-
кам по дальности. На рис. 3 показана часть исходного 
передаваемого сигнала и отклик от цели, где зоны пе-
ресечения как раз показывают «неопределенные» об-
ласти сигналов. 

 
Рис. 3. Вносимые искажения из-за временных задержек  

между сигналами 

Уровень боковых лепестков (УБЛ) прямо пропорцио-
нален площади пересечения данных сигналов и зависит 
от длительности ЛЧМ импульса, расстояния до цели и 
количества символов в двоичной модулирующей по-
следовательности. На основании первичного анализа 
циклограмм можно сделать следующие промежуточные 
выводы: 

– чем больше длительность сигнала, тем выше от-
ношение между совпадающими и пересекающимися 
областями, что приводит к подавлению УБЛ. 

– чем дальше цель, тем больше ее смещение от ок-
на накопления. Однако, окно накопления может быть 
смещено в более подходящее место, например, рассчи-
танное алгоритмами вторичной обработки сигналов. Но 
изначально предполагается, что целесообразно обес-
печить наименьшее искажение для самых близких и, 
следовательно, более высокоэнергетических целей. 

– чем больше символов в двоичной последователь-
ности, тем меньше отношение между совпадающими и 
пересекающимися областями.  

Автокорреляционные свойства сигналов 

Для более глубокого анализа данных алгоритмов 
цифровой обработки сигналов была построена их ма-
тематическая модель. На рис. 4 показан отклик от оди-
ночной цели в частотной области. 

 
Рис. 4. Отклик от одиночной цели 

Дополнительные составляющие (УБЛ) на уровне  
-34 дБ от максимума и являются основным критерием 
для исследования влияния различных параметров сиг-
налов в данном разделе. 

Далее показаны зависимости УБЛ от размера моду-
лирующей последовательности для различных длитель-
ностей ЛЧМ импульсов при расстояниях до цели 500 м 
(рис. 5) и 1000 м (рис. 6).  

 
Рис. 5. Зависимости УБЛ от размера последовательности 

для дальности 500 м  

 
Рис. 6. Зависимости УБЛ от размера последовательности 

для дальности 1000 м 

На рис. 7 показаны зависимости УБЛ от расстояния 
до цели при фиксированных параметрах длительности 
ЛЧМ импульса (10, 100 и 1000 мс соответственно) и 
размера последовательности (128).  

По результатам приведенных данных моделирования 
можно подтвердить сделанные ранее предположения о 
характере влияния параметров сигналов на их автокор-
реляционные свойства и что увеличение размера по-
следовательности и дальности до цели приводят  
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к увеличению УБЛ, а увеличение длительности импуль-
са – к уменьшению УБЛ. 

 
Рис. 7. Зависимости УБЛ от расстояния до цели 

Кросскорреляционные свойства сигналов 

При рассматриваемых параметрах сигналов, в отли-
чие от автокорреляционных свойств, кросскорреляцион-
ные свойства сигналов улучшаются при увеличении раз-
мера последовательности. Окончательная форма зави-
симостей УБЛ не столь предсказуема, поскольку на иска-
жения влияют уровни взаимной корреляции между всеми 
используемыми передающими сигналами, а также за-
держки сигналов откликов от целей. Далее было прове-
дено моделирование зависимости уровня взаимной кор-
реляции от параметров сигналов (рис. 8) для двух пере-
дающих сигналов (для учета влияния N передатчиков 
необходимо увеличить полученный уровень в N раз). 

 
Рис. 8. Зависимость уровня взаимной корреляции  

от параметров сигналов 

По результатам анализа полученных данных видно, 
что уровень взаимной корреляции зависит от размера 
последовательности и почти не зависит от остальных 
параметров сигналов.  

Стоит отметить, что, хотя пиковый УБЛ не сильно 
меняется с увеличением длительности ЛЧМ импульса, 
интегральный УБЛ значительно изменяется под влия-
нием этого параметра, что благоприятно сказывается 
как на авто-, так и на кросскорреляционных характери-
стиках сигналов. На рис. 9 показан отклик взаимной 
корреляции двух каналов от точечной цели для дли-
тельностей ЛЧМ импульса 10 мс и 1000 мс. 

 
Рис. 9. Отклик взаимной корреляции двух каналов  

от точечной цели 

По приведенным результатам видно, что интеграль-
ный УБЛ для большей длительности составляет лучшие 
значения, например, для полосы сигнала ±1 % для дли-
тельности 1000 мс он составил на 35 дБ меньше чем для 
длительности 10 мс. 

Стоит отметить, что существуют методы компенса-
ции задержки ответного сигнала с помощью фильтров 
группового времени запаздывания (ГВЗ), которые при-
меняют пропорциональную компенсацию ГВЗ для сигна-
лов на разных частотах. Однако быстрое переключение 
фазы увеличивает мгновенную полосу сигнала и введе-
ние компенсации ГВЗ будет вводить искажения, схожие 
с появлением боковых лепестков. Для борьбы с этим 
недостатком введения фильтров используют сглажива-
ние фазовой манипуляции на передающей стороне [11], 
предотвращающее резкие скачкообразные изменения 
фазы сигнала. Этот подход показал свою эффектив-
ность, но в нашем случае его использование в чистом 
виде потребовало бы введение двух ЦАП и IQ-
модулятора на каждый передающий канал, а также по-
чти удвоения физических линий соединений между пе-
редающими трактами и ПЛИС. Так как данный подход, 
на наш взгляд, остается самым перспективным, то в 
рамках данного исследования мы предлагаем вариант 
реализации упрощенного способа сглаживания без при-
менения ЦАП. 
Упрощенное сглаживание  
фазокодовой манипуляции 

Как уже было сказано в предыдущем разделе – сгла-
живание фазокодовой манипуляции позволяет умень-
шить искажения, однако, в общем случае требует суще-
ственных аппаратных усложнений. В рамках данного 
исследования, чтобы добиться сглаживания более про-
стым методом предлагается использовать схему сгла-
женной манипуляции, представленную на рис. 10. 

За счет того, что частота работы ПЛИС существенно 
превышает частоту изменения фазокодовой манипуля-
ции, то введение интегратора между ПЛИС и операци-
онным усилителем позволяет реализовать принцип ши-
ротно-импульсной модуляции (ШИМ) для формирования 
сглаженной функции изменения фазы. В самом простом 
исполнении аналоговый интегратор выполняется в виде 
RC фильтра нижних частот. Таким образом становится 
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возможным внедрение алгоритмов компенсации ГВЗ, 
описанные в [11] в существующую РЛС. 

 
Рис. 10. Схема канала передачи  

при сглаживании фазовой манипуляции  
с представлением вида сигнала в ключевых точках схемы 

Синтез виртуальной антенной решетки 

Интерференция каналов передачи из-за неидеальных 
кросскорреляционных свойств сигналов оказывает влия-
ние на сечение отклика цели в угловых координатах, для 
проверки степени этого влияния была составлена мо-
дель построения виртуальной антенной решетки 32 на 16 
в которой в каждом из 16 приемных каналов производит-
ся корреляционная обработка с 32 сигналами передатчи-
ков. После выполнения двумерного быстрого преобразо-
вания Фурье по значениям сигналов виртуальной антен-
ной решетки было получено распределение сигнала в 
угловых координатах для фиксированных параметров 
цели: дальность – 500 м, азимутальное и угломестное 
отклонение – 0,1 от полного сектора (рис. 11). На рис. 12 
показано сечение в азимутальной плоскости при угло-
местном отклонении – 0,1 от полного сектора. 

 
Рис. 11. Угловое распределение сигнала на дальности в 500 м 

По результатам видно, что полученные распределе-
ния соответствует классическому распределению для 
обычной антенной решетки 32 на 16 элементов, следо-
вательно, кросскорреляционные искажения не привели 
к значительным искажениям в плоскости угловых коор-
динат. 

Однако, остается влияние искажений, описанных в 
предыдущих разделах, на суммарный сигнал во времен-
ной области для заданного направления. Причем пара-
метры сигналов влияют на автокорреляционные и крос-
скорреляционные свойства сигналов противоположно, 
поэтому, предположительно, они компенсируют характер 
влияния друг друга, что приводит к постоянному уровню 
боковых лепестков на всем диапазоне дальностей. На 
рис. 13 показан результирующий сигнал на выходе вир-
туальной антенной решетки для фиксированного 
направления, соответствующего тестовой цели.  

 
Рис. 12. Пространственное распределение  

в азимутальной плоскости для дальности 500 м 

 
Рис. 13. Сигнал с одного направления после синтеза  

виртуальной антенной решетки 

Видно, что УБЛ сохраняется в диапазоне значений от 
-15 до -20 дБ на всем рассматриваемом диапазоне 
дальностей.  

Заключение  

Представленный в статье подход проектирования 
MIMO РЛС на базе ЛЧМ сигналов с быстрой сглаженной 
фазокодовой манипуляцией позволяет реализовать тре-
буемые функции по определению пространственных 
координат целей, при этом сама реализация взвешива-
ния построена без применения дополнительных микро-
схем ЦАП и реализована за счет добавления очень про-
стого интегратора на базе RC фильтра нижних частот в 
каждый канал передатчика. 

Тем не менее, у данного подхода есть свои недостат-
ки в части все еще достаточно высокого уровня УБЛ. К 
преимуществам исследуемой системы можно отнести 



 

 
 
68 

обнаруженную низкую чувствительность к входным па-
раметрам, это облегчает увеличение числа передаю-
щих физических элементов, что может быть полезно в 
некоторых случаях, когда стоимость тракта передачи 
является решающей для общей цены РЛС.  

В целом, описанный способ может быть использован 
в радиолокационных системах малой дальности с 
большим количеством передающих каналов, и актуаль-
ными остаются исследования возможностей примене-
ния более сложных алгоритмов вторичной обработки 
сигналов для борьбы с обозначенными недостатками. 
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