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Рассматривается алгоритм сегментации водных участков с 
использованием спутниковых SAR изображений. Для проведения 
исследования применялся набор из 27 спутниковых изображений, 
обладающих пространственным размером приблизительно 200 на 
300 километров с разрешением 10 метров на пиксель. В качестве 
нейросетевых моделей используются три модели с архитектурами 
ResNet-34+U-Net, SegFormer_b5 и SegNeXt_l. Соответствующий 
алгоритм принимает на вход патчи с 2 каналами – VV и VH, а на 
выходе выдает бинарную маску сегментации. Для оценки работы 
моделей использовались такие метрики, как Dice, F-мера, точность 
и полнота. Наибольшее значение Dice составило 0,9. Однако все 
модели имеют трудности в точной сегментации изображений на 
границах водных поверхностей, что приводит к большому числу 
ложных пропусков. Также в рамках данного исследования проведена 
оценка влияния спекл-шума на качество работы нейросетевой мо-
дели, которая показала, что даже при заметном увеличении зашум-
ленности, измеренной метрикой PSNR, опускающейся до значений 
9,65-9,86 дБ, модель не теряет точность работы. Как по исходно-
му набору, так и по зашумленному значение метрики Dice остается 
в пределах 0,96-0,97, метрики F1 – в пределах 0,81-0,82 и метрики 
Recall – в пределах 0,97-0,98. 
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The article considers an algorithm for water area segmentation using satellite SAR images. The study used a set of 27 satellite im-
ages with a spatial size of approximately 200 by 300 kilometers with a resolution of 10 meters per pixel. Three models with the 
ResNet 34+U-Net, SegFormer_b5 and SegNeXt_l architectures are used as neural network models. The corresponding algorithm 
accepts patches with 2 channels – VV and VH – as input and produces a binary segmentation mask at the output. To evaluate the 
performance of the models, such metrics as Dice, F measure, accuracy and recall were used. The highest Dice value was 0.9. 
However, all models have difficulties in accurate segmentation of images at the boundaries of water surfaces, which leads to a large 
number of false positives. Also, within the framework of this study, an assessment of the impact of speckle noise on the quality of 
the neural network model was carried out, which showed that even with a noticeable increase in noise, measured by the PSNR met-
ric, dropping to values of 9.65-9.86 dB, the model does not lose accuracy. Both for the original set and for the noisy one, the value 
of the Dice metric remains within 0.96-0.97, the F1 metric – within 0.81-0.82 and the Recall metric – within 0.97-0.98. 

Key words: satellite image segmentation, SAR images, deep machine learning, neural networks, speckle noise. 

 
Ключевые слова: сегментация спутниковых 

изображений, SAR изображения, глубокое ма-
шинное обучение, нейронные сети, спекл-шум.  

Введение 

В настоящее время использование данных 
дистанционного зондирования земли (ДЗЗ) 
нашло широкий спектр применения в различ-
ных отраслях экономики, например, для оценки 
лесной биомассы, управления сельскохозяй-
ственными и природными ресурсами, в задачах 
геологии, для предупреждения стихийных бед-
ствий [1-3]. Для решения подобных задач в 
настоящее время широко используются алго-
ритмы автоматической обработки изображений 
со спутников, полученных в разных диапазонах 
электромагнитного спектра, реализованные  
с помощью современных нейросетевых моде-
лей [4-10]. 

В данной работе рассматривается задача 
определения водных поверхностей на спутни-
ковых изображениях, полученных в радиодиа-
пазоне. Она относится к задаче мониторинга 
водоемов, входящей в группу задач мониторинга 
земной поверхности, к которой относится также 
мониторинг сельскохозяйственных полей и лесного по-
крова. Одной из целей подобных исследований являет-
ся мониторинг наводнений в режиме онлайн, а также 
оценка их масштаба.  

Специфика задачи мониторинга наводнений заклю-
чается в том, что они обычно сопровождаются сопут-
ствующими негативными погодными условиями – до-
ждями, сильным ветром, облачностью. В связи с этим 
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данные со спутника, полученные в оптическом диапа-
зоне, где атмосферные помехи особенно значимы, яв-
ляются не самым подходящим источником информации 
для мониторинга. Поэтому для такого рода задач часто 
используют спутниковые изображения в радиодиапа-
зоне, полученные с помощью радаров с синтезирован-
ной апертурой (РСА, SAR). Благодаря им можно прово-
дить исследования, игнорируя атмосферные условия 
[11-15]. Однако при этом на изображениях, получаемых 
с помощью систем РСА, присутствует высокий уровень 
шума, обусловленного природой обратного рассеяния 
радара (радиолокационной станции, РЛС). Самым 
большим источником шума на изображении РСА тради-
ционно является спекл-шум [16], поэтому в данной ра-
боте также исследуется его влияние на качество работы 
нейросетевой модели. 

Целью работы является разработка и исследование 
алгоритма сегментации водных участков на спутнико-
вых изображениях в радиодиапазоне с использованием 
современных нейронных сетей и методов глубокого 
машинного обучения. 

Описание набора спутниковых изображений 

Для проведения исследования создан набор 16-бит-
ных радиолокационных изображений с использованием 
открытой электронной базы проекта Copernicus [17]. 
Каждое изображение охватывало пространственную 
область размером приблизительно 200 на 300 километ-
ров с разрешением 10 метров на пиксель. В состав каж-
дого снимка входили два канала – VV и VH, предостав-
ляющих информацию о вертикальной и горизонтальной 
поляризации соответственно. С целью улучшения каче-
ства изображений и повышения их информативности 
удалены тепловые шумы и шумы по краям, а также вы-
полнена радиометрическая калибровка и геометриче-
ская коррекция. Каждому изображению присвоена экс-
пертная бинарная маска, определяющая области с вод-
ными поверхностями. Фрагменты из набора данных с 
соответствующими масками представлены на рис. 1. 
Для обучения из исходных больших изображений с ша-

гом 256 пикселей сформированы патчи размером 
512х512 пикселей. Изображения переведены из 16-бит-
ного в 8-битный формат. Полученный набор данных по-
делен на обучающую и тестовую выборки в соотноше-
нии 100 к 8 (или 25 к 2). Более подробная информация 
об используемом наборе изображений представлена в 
табл. 1. 

Описание архитектур используемых нейросетевых 
моделей 

Для решения задачи сегментации водных участков 
использовано 3 различных нейросетевых модели. В ка-
честве первой использована широко применяемая в 
различных задачах сегментации данных ДЗЗ сверточная 
нейронная сеть U-Net, на входе которой находится базо-
вая сеть с архитектурой ResNet-34 [18]. В качестве двух 
других алгоритмов выбраны нейронные сети на базе 
трансформеров, в основе которых лежит наличие меха-
низма внимания: SegFormer [19] и SegNeXt [20].  

Первая относится к типу нейронных сетей, полно-
стью работающих с использованием трансформеров. Их 
главной особенностью является наличие механизма 
внимания, позволяющего ускорить обучение и связать 
все вводимые данные между собой. Эта особенность 
дает возможность выполнять параллельную обработку 
данных и учитывать контекст. Сеть SegFormer состоит из 
кодировщика и декодировщика. Кодировщик выполняет 
роль извлечения грубых и точных признаков из входного 
изображения и состоит из блока разбиения на патчи и 4 
блоков-трансформеров. Декодировщик в SegFormer 
объединяет многоуровневые признаки, выработанные 
кодировщиком, для прогнозирования маски сегментации.  

В качестве третьей модели использовалась нейросе-
тевая модель с архитектурой SegNeXt. Она также отно-
сится к типу трансформеров и является улучшением 
архитектуры SegFormer. В кодировщике SegNeXt вместо 
блока внимания из SegFormer используется многомас-
штабный модуль сверточного внимания – MSCA (multi-
scale convolutional attention). Совместно с 2 слоями нор-
мализации батча и сетью прямого  распространения, мо- 

 
 а) б) в) г) 

Рис. 1. Фрагменты изображений из набора (а, в) и соответствующие им маски (б, г) 

Таблица 1. Статистика сформированного набора изображений 

 Обучающая выборка Тестовая выборка 
Количество изображений 25 2 
Количество патчей 178817 13714 
Количество патчей с водными участками 97679 7202 
Количество патчей без водных участков 72226 6512 
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дуль MSCA образует блок MSCAN, являющийся основ-
ным структурным элементом кодировщика в SegNeXt, 
аналогичный трансформерному блоку в SegFormer. 
Блок MSCAN также повторен 4 раза. Декодировщик в 
SegNeXt отличается тем, что объединяет признаки, по-
лученные только с 3 последних этапов, а не со всех 4, 
как в SegFormer, что повышает производительность и 
отбрасывает низкоуровневую информацию с первого 
этапа. Кроме того, он отличается наличием операции 
разложения матриц извлеченных признаков. 

Результаты компьютерного  
моделирования алгоритмов сегментации 

Рассмотрим результаты обучения и тестирования 
представленных моделей. Все они перед итоговым обу-
чением имели веса, полученные при их обучении на 
доступных наборах изображений ImageNet и DeepGlobe 
Land Cover [21]. Обучение на наборе ImageNet дало 
способность решать задачу поиска низкоуровневых 
признаков, а на наборе DeepGlobe – решать задачу сег-
ментации на спутниковых снимках. Обучение происхо-
дило с размером батча 4. Каждая из моделей обучалась 
тремя разными способами. Первые два – с балансиров-
кой батча (Balance50x50), а также без его балансировки 
(noBalance). Третий способ (AI) заключался в подходе 
повышения инвариантности модели к различным ауг-
ментациям. Для него брался тот способ балансировки, 
который показал наиболее высокие результаты. 

Специфика спутниковых изображений заключается в 
том, что они не привязаны к определенным углам пово-
рота, а также могут подвергаться достаточно серьезным 
фотометрическим искажениям из-за угла наклона каме-
ры. Поэтому стандартные методы обучения нейронных 
сетей могут давать худшие результаты в задачах сег-
ментации спутниковых изображений. Подход повыше-
ния инвариантности к таким преобразованиям заключа-
ется в том, что предсказания по исходному изображе-
нию должны совпадать с предсказаниями по аугменти-
рованному после их обратного преобразования [22]. 
Для обучения на основе такого подхода использовалась 
общая функция потерь, которую можно выразить как: 

( , ) ( ( ), ( )) ( , ( )),tot seg seg AIL L x y L A x A y L x A x    

1 21( , ( )) [ ( ) ( ( ( )))] ,AI i ii I
L x A x f x A f A x

I



   

где totL  – общая ошибка потерь, segL  – ошибка сегмен-

тации, AIL  – разница между предсказаниями по изоб-

ражению с аугментациями и без них, выраженная как 
среднеквадратичная ошибка, A  – набор аугментаций, x  
– исходное изображение, y  – экспертная разметка, if  – 

предсказание модели,   – модулирующий параметр. В 
качестве аугментаций использовалось: изменение ярко-
сти, случайные повороты, искажение перспективы, от-
ражение по вертикали и горизонтали. 

Все обучаемые модели принимают на вход 2-ка-
нальный патч размером 512х512 пикселей, а на выходе 
выдают одноканальную бинарную маску с тем же разме-
ром, что и патч на входе.  

Для объективной оценки качества работы нейросете-
вых моделей использовались стандартные метрики, та-
кие как точность (presicion, P), полнота (recall, R), F-мера 
(F1) и коэффициент Сёренсена (Dice). В табл. 2 приве-
дены результаты тестирования трех моделей. Здесь TP 
(true positive) – количество истинно положительных 
предсказаний, FP (false positive) – количество ложнопо-
ложительных предсказаний, FN (false negative) – количе-
ство ложных пропусков. 

Видно, что все модели достаточно хорошо опреде-
ляют границы найденных объектов, на что указывает 
высокое значение коэффициента Сёренсена. Наиболь-
шим значением, равным 0,9, обладают модели 
SegFormer_b5 и SegNeXt_l, обученные с балансировкой 
батча 50х50. Лучшее значение полноты получилось у 
модели ResNet-34+U-Net. Она обладает наибольшим 
количеством истинных предсказаний. Подход повыше-
ния инвариантности, примененный при обучении 
SegFormer_b5 и SegNeXt_l на данном наборе изображе-
ний, привел к увеличению количества ложных срабаты-
ваний на 20-25% для обеих моделей. При этом количе-
ство истинных ответов и ложных пропусков изменилось 
незначительно. В связи с этим, у моделей, обученных с 
данным подходом, метрики точности и полноты хуже, 
чем у моделей, обученных без его использования. Кроме 
того, у всех моделей наблюдается большое количество 
ложных срабатываний. Это можно объяснить тем, что на 
изображениях много малых водных участков. 

На рис. 2 на примере модели SegFormer_b5 пред-
ставлен результат обработки двух изображений и при-
ведено наглядное сравнение эталонной и предсказан-
ных масок, которое подтверждает значения полученных 
выше метрик. На верхнем изображении большой участок 
сегментировался достаточно точно. Ошибки проявились 
на границе с земной поверхностью. Данный пример по-
казывает  ложные   пропуски.  На  нижнем  предсказании 

Таблица 2. Результаты тестирования нейросетевых моделей 

 Метрика 
Нейросетевая архитектура Dice F1 Precision Recall TP FP FN 
ResNet-34+U-Net, noBalance 0,73 0,45 0,35 0,61 25157 45732 16270 
ResNet-34+U-Net, Balance50x50 0,74 0,44 0,32 0,71 29261 60768 12166 
SegFormer_b5, noBalance 0,89 0,39 0,30 0,54 22282 50646 19145 
SegFormer_b5, Balance50x50 0,90 0,39 0,31 0,53 21963 49585 19464 
SegFormer_b5, AI + Balance50x50 0,87 0,39 0,25 0,50 20682 63119 20745 
SegNeXt_l, noBalance 0,89 0,40 0,31 0,58 24447 51684 17980 
SegNeXt_l, Balance50x50 0,90 0,42 0,33 0,58 24231 49072 17196 
SegNeXt_l, AI + Balance50x50 0,88 0,40 0,30 0,61 25089 59950 16338 
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 а) VV/VH  б) Эталонная маска  в) SegFormer_b5 

 
 а) VV/VH  б) Эталонная маска  в) SegFormer_b5 

Рис. 2. Пример работы нейросетевого алгоритма для двух изображений 

присутствуют ложные срабатывания, выраженные в 
том, что маленькие участки воды сегментируются более 
сглажено, чем в эталонной маске.  

Оценка влияния спекл-шума  
на работу алгоритмов сегментации 

Проведено также исследование влияния спекл-шума 
на работу нейросетевых алгоритмов. Для исследования 
использовалась модель спекл-шума, выраженная сле-
дующей формулой: 

    * ( , ),imgnoise img img gauss mean var   

где noiseimg – зашумленное изображение, img – исход-
ное изображение, gauss(mean, var) – случайный набор 
пикселей с размерностью изображения и гауссовским 
распределением с математическим ожиданием mean и 
дисперсией var. Для моделирования использовалось 
нулевое математическое ожидание и значения диспер-
сии – 0,01; 0,05; 0,1; 0,5; 1. Для каждого значения мате-
матического ожидания и дисперсии создавался соот-
ветствующий набор изображений. Примеры изображе-
ния с разной степенью зашумленности представлены на 
рис. 3. На изображениях var – значение дисперсии, ис-
пользуемой при зашумлении. 

Далее на каждом таком наборе тестировалась мо-
дель SegFormer_b5. Результаты тестирования приведе-
ны в табл. 3. 

Тестирование на данных наборах показало, что при 
увеличении шума заметно падает количество ложных 
срабатываний. Отсюда можно сделать вывод о том, что 
это происходит из-за того, что изображения имеют 
большое количество малых объектов, на которых мо-
дель часто ошибается, а зашумление дало эффект того, 

что модель стала чаще пропускать эти объекты. 
Далее использовались только такие тестовые изоб-

ражения, на которых присутствовали лишь средние и 
большие объекты, а тестовый набор данных фильтро-
вался по размеру объектов. Подготовлено 2 дополни-
тельных набора данных – набор изображений с мини-
мальным размером объекта в 1000 пикселей и набор с 
минимальным размером объекта в 3000 пикселей. Для 
порога в 1000 пикселей количество изображений соста-
вило 7562, а для порога в 3000 – 6989 изображений. Ре-
зультаты тестирования приведены в табл. 4 и табл. 5. 

В обоих случаях все метрики, кроме Precision, стали 
очень высокими. Метрика Precision осталась низкой из-
за большого количества ложных срабатываний на мел-
ких объектах. Выход модели при данном тестировании 
не фильтровался по площади найденных объектов. Дан-
ные результаты также подтверждают предыдущие вы-
воды о том, что модели плохо работают с малыми объ-
ектами. Также можно заметить, что даже при значитель-
ном увеличении шума модель является устойчивой к 
нему при сегментации средних и больших объектов, что 
подтверждает неизменность значений метрик при раз-
ных значениях добавленного шума. 

Заключение  

Разработан алгоритм сегментации водных участков с 
использованием SAR-изображений. Для реализации 
использовались 3 модели глубокого обучения – ResNet-
34+U-Net, SegFormer_b5 и SegNeXt_l, каждая из которых 
обучалась тремя способами: первые два – с баланси-
ровкой батча, третий – без балансировки. Использован 
подход повышения инвариантности к аугментациям. Для 
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 а) изображение без шума  б) var = 0,01  в) var = 0,05 

 
 г) var = 0,1  д) var = 0,5  е) var = 1 

Рис. 3. Пример одного изображения с разной степенью зашумленности 

Таблица 3. Тестирование модели SegFormer_b5 на зашумленных изображениях 

mean var TP FP FN Precision Recall F1 Dice 
0 0 22282 50646 19145 0,31 0,54 0,39 0,86 
0 0,01 21952 49603 19475 0,31 0,53 0,39 0,90 
0 0,05 21938 49449 19489 0,31 0,53 0,39 0,90 
0 0,1 21921 49482 19506 0,31 0,53 0,39 0,90 
0 0,5 20855 44194 20572 0,32 0,50 0,39 0,90 
0 1 17443 35738 23984 0,33 0,42 0,37 0,90 
Таблица 4. Тестирование модели SegFormer_b5 на изображениях с минимальным размером объекта 1000 пикселей 

mean var TP FP FN Precision Recall F1 Dice 
0 0 1487 1836 17 0,45 0,99 0,62 0,97 
0 0,01 1487 1840 17 0,45 0,99 0,62 0,97 
0 0,05 1487 1808 17 0,45 0,99 0,62 0,97 
0 0,1 1487 1814 17 0,45 0,99 0,62 0,97 
0 0,5 1484 992 20 0,60 0,99 0,75 0,97 
0 1 1479 497 25 0,75 0,98 0,85 0,96 

Таблица 5. Тестирование модели SegFormer_b5 на изображениях с минимальным размером объекта 3000 пикселей 

mean var TP FP FN Precision Recall F1 Dice 
0 0 567 1294 6 0,30 0,99 0,47 0,98 
0 0,01 567 1296 6 0,30 0,99 0,47 0,98 
0 0,05 567 1275 6 0,31 0,99 0,47 0,98 
0 0,1 567 1287 6 0,31 0,99 0,47 0,98 
0 0,5 567 533 6 0,52 0,99 0,68 0,98 
0 1 565 207 8 0,73 0,99 0,84 0,97 

 
обучения подготовлен набор из 27 спутниковых изобра-
жений в радиодиапазоне, которые поделены на патчи 
размером 512х512 пикселей. Оценка качества работы 
обученных моделей происходила с помощью таких мет-
рик как точность, полнота, F-мера и Dice. Исследование 
показало, что все 3 модели на хорошем уровне опреде-

ляют границы найденных участков, на что указывает 
высокое значение метрики Dice. Наибольшее ее значе-
ние (0,9) у моделей SegFormer_b5 и SegNeXt_l. Исполь-
зование подхода повышения инвариантности к аугмен-
тациям на этом наборе изображений привело к увеличе-
нию числа ложных срабатываний на 20-25% для каждой 
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модели. Также установлено, что все модели в целом 
обладают большим количеством ложных срабатываний. 
В основном данные ошибки происходят на границах 
водных и земных участков, а также на малых водных 
участках.  

Проведенный анализ влияния спекл-шума на каче-
ство работы моделей показал, что в данной задаче да-
же сильное его увеличение, выраженное опускающейся 
до значений 9,65-9,86 дБ метрикой PSNR, не влияет на 
значение метрик оценки качества работы модели. Как 
по исходному набору, так и по зашумленному значение 
метрики Dice остается в пределах 0,96-0,97, метрики  
F1 – в пределах 0,81-0,82, а метрики Recall – в преде-
лах 0,97-0,98. 
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