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Получены соотношения, позволяющие определить границы Рао-
Крамера для совместных и раздельных оценок относительной часто-
ты, начальной фазы и амплитуды гармонического сигнала, представ-
ленного короткой выборкой, принимаемого на фоне белого нормального 
шума. Под короткой выборкой понимается сигнал, содержащий на ин-
тервале наблюдения доли и единицы периода. Проведено статистиче-
ское моделирование при разных отношениях сигнал-шум, результаты 
которого полностью совпали с результатами расчетов по полученным 
выражениям. Приведены результаты статистического моделирования, 
позволяющие определить смещения оценок частоты и начальной фазы 
сигналов, представленных короткой выборкой. 

УДК 621.396 

ОЦЕНКА ЧАСТОТЫ И ФАЗЫ ГАРМОНИЧЕСКОГО СИГНАЛА,  
ПРИНИМАЕМОГО НА ФОНЕ БЕЛОГО ШУМА, ПО ЕГО КОРОТКОЙ ВЫБОРКЕ 

Паршин В.С., д.т.н., профессор кафедры РУС РГРТУ им. В. Ф. Уткина, e-mail: vsparshin@gmail.com 
Нгуен В.Д., аспирант кафедры РУС РГРТУ им. В. Ф. Уткина, e-mail: ducnguyenvan15043003@gmail.com 

ESTIMATION OF FREQUENCY AND PHASE OF A HARMONIC SIGNAL RECEIVED 
AGAINST A WHITE NOISE BACKGROUND FROM ITS SHORT SAMPLE  

Parshin V.S., Nguyen V.D. 
The paper presents relationships that allow one to determine the Rao-Kramer boundaries for joint and separate estimates of the rel-
ative frequency, initial phase, and amplitude of a harmonic signal represented by a short sample, received against a background of 
white normal noise. A short sample is understood to be a signal containing fractions and units of a period in the observation interval. 
Statistical modeling was performed for different signal-to-noise ratios, the results of which completely coincided with the results of 
calculations using the obtained expressions. The paper presents the results of statistical modeling that allow one to determine the 
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Введение 

В ряде случаев приходится измерять часто-
ту гармонических колебаний, представленных 
короткой выборкой. Такая задача возникает при 
измерении малых расстояний дальномером с 
частотной модуляцией излучаемого сигнала, 
анализе сигналов в акустике, гидроакустике, сейсмоаку-
стике. 

В данной работе под термином «короткая выборка» 
понимается реализация сигнала, относительная частота 
n  которой 

,иn = ωT 2  (1) 

где ω  – круговая частота; иT  – длительность реализа-

ции, такова, что на интервале времени иT  содержатся 
доли и единицы периода колебания. 

На практике очень часто используют для оценки ча-
стоты ω̂  алгоритм [1, 2] 

ˆ( ) { ( )},
ω

S ω = max S ω  (2) 

где ( )S ω  – спектральная плотность амплитуды. 

Согласно (2) за оценку частоты ω̂  принимается та 
частота ω,  на которой находится максимальная спек-
тральная составляющая спектральной плотности ( )S ω . 

Использование алгоритма (2) для оценки частоты 
приводит к слишком большим погрешностям, поскольку 
максимальная спектральная составляющая при малом 
числе периодов на интервале наблюдения находится 
либо на нулевой частоте, либо в ее окрестностях. Кроме 
того, алгоритм (2) не позволяет оценивать фазу сигна-

ла, которая в ряде случаев является информативным 
параметром. 

В ряде работ [3-9] предложены различные алгоритмы 
измерения параметров радиосигнала по его короткой 
реализации. Однако упомянутые алгоритмы или не поз-
воляют обеспечить потенциальную точность оценки па-
раметров радиосигнала при приеме его на фоне белого 
нормального шума, или позволяют осуществлять оценку 
какого-то одного параметра. 

Целью работы является определение смещения и 
дисперсии оценок (границ Рао-Крамера) частоты и фазы 
радиосигнала, представленных короткой выборкой, при 
использовании для оценок метода максимального прав-
доподобия.  
Постановка задачи 

Принимаемая реализация ( )y t  является суммой по-

лезного сигнала ( )S t  и нормального белого шума ( )t  с 

односторонней спектральной плотностью мощности .0N  

2( ) ( ) ( ) ( ),
и

ny t = S t + t = acos t + φ + t
T


 
 
 
 

 (3) 

где a,  n,  φ  – соответствуют амплитуде, относительной 
частоте и начальной фазе полезного сигнала. 
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Для оценки параметров радиосигнала (3) воспользуем-
ся методом максимального правдоподобия. Полагаем, что 
длительность реализации иT  известна. В общем случая 
логарифм функции отношения правдоподобия (ЛФОП) 
ln{ ( , , )}оп оп опa n   можно представить в виде [1-2] 

  ln , ,оп оп опa n =  (4) 

     1, , , ,
2

иT
2

оп оп оп оп оп оп оп оп
0 0

2= y t S t,a n - S t,a n dt ,
N

  
 
   

где ( , , )оп оп оп опS t,a n   – опорный сигнал. 

Для получения оценок ˆ ˆ ˆ  a, n, φ  параметров a,  n,  φ  
необходимо, варьируя значения параметров опорного 
сигнала, добиться максимизации ЛФОП. За оценки 
ˆ ˆ ˆ  a, n, φ  параметров a,  n,  φ  принимаются те значения 

параметров опорного сигнала, при которых функция (4) 
достигает максимума. 

Вычисляя интеграл в (4), с учетом (3) получаем 
  

 
 

 

   
 

   

0

0

2 2

0 0

ln , ,

2 2

оп оп оп

опоп и
оп оп

оп

опоп и
оп оп

оп

опоп и оп и
оп оп

оп

a n =

sin n - naa T
= cos n - n +φ - φ +

N n - n

sin n+naa T+ cos n+n + φ+φ -
N n+n

sin 2 na T a T - cos 2 n +2φ - .
N 2 n N




















    

    
 (5) 

Обычно полагают, что относительная частота доста-
точно велика ( 1).n  При этом слагаемыми с удвоен-
ной относительной частотой в (5) можно пренебречь. 
Тогда функцию ln{ ( , , )}оп оп опa n   можно переписать в 
виде 

 

 

 
0

2

0

ln ( , , )

( )

sin ( )
.

( ) 2

оп оп оп

оп и
оп оп

оп оп и

оп

 a n =
aa T

= cos n n + φ - φ
N

n n a T
-

n n N










 






 (6) 

Обычно функция (6) используется для определения 
дисперсии оценки параметров радиосигнала. В работе 
для определения дисперсии оценок будет использо-
ваться ЛФОП (5), что позволит определить поведение 
оценок для малых относительных частот.  

Оценка относительной частоты при известной фазе 

Самой простой ситуацией на практике является из-
мерение относительной частоты при известных ампли-
туде и фазе, то есть 0 0оп опa = a = a , φ = φ = φ  ( 0a  и  

0φ  – соответственно истинное значение амплитуды и 

начальной фазы). В этом случае ЛФОП ln{ ( )}опn  
можно записывать таким образом 

   0

0

sin 2 ( )2
ln ( )

2 ( )
оп

оп
оп

n nE
n = +

N n n








 

   0
0

0

sin ( )2
cos ( ) 2

( )
оп

оп
оп

n nE
+ n n -

N n n


 



 


 

0 0
0

0 0

sin(2 )
 - cos(2 2 ) ,

(2 )
оп

оп
оп

E n En -
N n N


 


  (7) 

где энергия 2
0 0 2.иE = a T  

Нижняя граница дисперсии оценки относительной 
частоты n̂  (нижняя граница Рао-Крамера) при извест-
ных амплитуде и фазе определяется известным соот-
ношением [1-2]: 

  ˆ 2 2

1 .
ln

оп

n
оп оп n n

D
n n



 
  

 (8) 

Проводя необходимые вычисления, получаем ниж-
нюю границу дисперсии оценки относительной частоты 

 ˆ 22 2
0

n
0

ND =
E π

  (9) 

3

1 .
sin(4 2 ) cos(4 2 ) cos(2 2 )sin(2 )1 1-

3 2 (2 ) (2 ) (2 )
0 0 0

2

πn+ φ πn+ φ πn+ φ πn+ -
πn πn πn


 
 
 

 

Из выражения (9) следует, что дисперсия оценки от-
носительной частоты n̂  зависит от измеряемой частоты 
n  и значения начальной фазы, и имеет колебательный 
характер. В частном случае, когда измеряемая относи-
тельная частота достаточно велика ( 1),n  слагаемы-

ми множителя вида sin( )x x  и cos( )x x  можно прене-

бречь. В этом случае, с учетом того, что ,иω = 2πn T  
дисперсия оценки частоты [1] будет равна 

2
ˆ 0 0 .иD 3N 2E T   
Результаты моделирования представлены на рис. 1. 

Моделирования осуществлялись при фиксированном 
значении времени наблюдения. На рис. 1, а показано 
смещение оценки относительной частоты ˆ,n  величина 
которого определяется так: 

 
1

1 ˆ ˆ ,
L

n i
i=

= n - n = m n - n
L

   (10) 

где L  – число реализаций;  ˆm n  – математическое 
ожидание оценки относительной частоты; n  – измеряе-
мая относительная частота. 

На рис. 1, б приведена дисперсия оценки относи-
тельной частоты, величина которой рассчитывается по 
следующей формуле 

  22

1

1 ˆ ˆ .
L

n i
i=

σ = n - m n
L  (11) 

Число реализации 1000,L =  начальная фаза сигна-
ла 0.0φ   Графики 1, 2 и 3, приведенные на рис. 1, по-
лучены при отношении сигнал-шум, величина которого 
соответственно равна 0 3802E N =  дБ, 0 02E N =   

= 32  дБ и 0 2602E N =  дБ. 

По рис. 1, а видно, что график смещения относитель-
ной частоты имеет колебательный характер. Увеличе-
ние измеряемой относительной частоты приводит к 
уменьшению смещения. Необходимо отметить, что 
смещение оценки частоты возникает из-за влияния сла-
гаемых с удвоенной частотой в (5). 

Рис. 1, б показывает, что дисперсия оценки относи-
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тельной частоты также является функцией частоты. При 
достаточно большой относительной частоте дисперсия 
оценки n̂  становится равна [1] величине n̂D =  

2
0 03 2 ( ) .N E 2  

Необходимо отметить, что результаты расчетов по 
формуле (9) полностью совпадают с результатами мо-
делирования и поэтому не приводятся.  

Совместная оценка относительной частоты и фазы  

Наиболее часто встречающийся на практике случай, 
когда начальная фаза исследуемого сигнала не извест-
на. В этом случае задача оценки относительной частоты 
n̂  при неизвестной фазе сводится к задаче нахождения 
максимума ЛФОП ln{ ( , )},оп опn   то есть к задаче сов-

местной оценке величин опn  и .оп  Полагая известной 

амплитуду, ЛФОП ln{ ( , )}оп опn   можно представить в 
виде 

  

   

   

0

0

0

0

0 0

0 0

ln ,

( )2
( )

( )
( )2

( )
( )

( )
( ) .

оп оп

оп
оп оп

оп

оп
оп оп

оп

оп
оп оп

оп

n =

sin n nE= cos n n +φ - φ +
N n n

sin n nE
+ cos n n +φ+φ -

N n n
E sin 2 n E

- cos 2 n +2φ -
N 2 n N





























 (12) 

Вычисляя производные  

 ln ( , )

оп

оп

2
оп оп

ik
n nопi опk

n
J = -

n
 


 



  
 

   
 (13) 

и составляя корреляционную матрицу оценок [1], полу-
чаем нижние границы Рао-Крамера для оценок частоты 
и фазы 

0
ˆ 2 2

0

,
2 (4 )n

N C
D =

E AC + B
  (14) 

0
ˆ 2

0

4
,

2 (4 )φ
N A

D = -
E AC + B

 (15) 

где 2

sin(4 2 ) sin(2 2 )sin(2 )1 ,
2 (2 )

n+ φ n+ φ nB = - +
n n

  
 

 C =  

cos(2 2 ) (2 )-1 ,
2

n+ φ sin n= +
n

 


 
 sin 4 21 1

3 2 2
n+ φ

A = - -
n




 

1 cos(4 ) 1 cos(2 )sin(2 ) .
2 2(2 ) (2 )2 3

n+2φ n+ 2φ n- +
n n

  
 

 

В частном случае при 1n  можно пренебречь сла-
гаемыми вида sin( )x x  и cos( ) .x x  При этом дисперсии 
совместной оценки частоты и фазы будут равны [1] 

2
ˆ 0 012 2 иD N E T   и ˆ 0 04 2 .φD = N E  

Результаты моделирования приведены на рис. 2. 
Условия моделирования те  же самые, что и при получе- 

 
 а) б) 

Рис. 1. Зависимости смещения (а) и дисперсии оценки относительной частоты при известной фазе сигнала 

 
 а) б) 

Рис. 2. Зависимость дисперсии совместной оценки относительной частоты (а) и начальной фазы (б) 
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 а) б) 

Рис. 3. Смещение совместных оценок относительной частоты (а) и начальной фазы (б) 

нии графиков, представленных на рис. 1. Графики 1,  
2, 3 соответствуют отношениям сигнал-шум, величина 
которого соответственно равна 0 3802E N =  дБ, 

02 320E N =  дБ и 02 260E N =  дБ. При проведении 
моделирования полагалось, что фаза опорного сигнала 
изменялась в интервале оп-π 2+φ φ π 2+φ,   где  
φ  – задаваемая фаза сигнала (3). Cравнение результа-
тов, приведенных на рис. 1, б и рис. 2, а, показывает, 
что дисперсия оценки относительной частоты при неиз-
вестной фазе примерно в 4 раза больше дисперсии 
оценки относительной частоты при известной фазе и 
для короткой выборки. 

На рис. 3 показаны смещения оценки частоты и фа-
зы, величины которых определяются по формуле (10). 
Из сравнения результатов, приведенных на рис. 1, а и 
рис. 3, а, следует, что из-за незнания фазы сигнала 
смещение относительной частоты увеличивается. При 
увеличении отношения сигнал-шум смещение оценок 
быстро уменьшается. Результаты расчетов по (14, 15) 
также полностью совпадают с результатами моделиро-
вания.  

Совместные оценки относительной частоты,  
фазы и амплитуды  

Дисперсии оценки совместных трех параметра ˆ ,nD  

ˆD  и âD  определяются известным соотношением [1] 

,-1
ikR J  (16) 

где ikR  – корреляционная матрица ошибок оценок; J  – 

информационная матрица Фишера; -1J  – обратная 
матрица J . 

Вычисляя необходимые операции, получаем следу-
ющие значения для дисперсии оценок амплитуды ˆ ,aD  

относительной частоты n̂D  и фазы ˆD . 
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ˆ ,
2

11 22 12
33 φ

J J - J
R = D =

Δ
 (19) 
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При n 1  коэффициенты A, B, C, D  и F  будут рав-
ны нулю ( 0).A = B = C = D = F =  При этом дисперсии 

оценки амплитуды, фазы и частоты равны ˆ ,a 0 иD = N T  

ˆ 0φ 0D = 4N 2E  и 2
ˆ 0 0 ,иD 12N 2E T   то есть совпадают с 

границами Рао-Крамера для достаточно больших отно-
сительных частот [1]. 

Результаты моделирования представлены на рис. 4. 
Графики 1, 2 и 3 соответствуют дисперсиям оценок при 

0 3802E N =  дБ, 0 3202E N =  дБ, 0 2602E N =  дБ. 

Анализ полученных графиков показывает, что при 
относительной частоте 0,8n   дисперсии оценок (ча-
стоты, фазы) резко возрастают. 

На практике для устранения влияния разницы ампли-
туд принятого и опорного сигналов на результат измере-
ния можно использовать инвариантное преобразование 
[8] 

      ,
иT

2

0

y t = y t y t dt   (20) 

что позволяет существенно уменьшить число вычисли-
тельных операций при нахождении экстремума ЛФОП.  
  



 

 
 
20 
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Рис. 4. Дисперсия оценки относительной частоты (а) и начальной фазы (б) 

  
Рис. 5. Дисперсии оценки частоты при известной фазе  

и использовании инвариантного преобразования 
Рис. 6. Дисперсии оценки частоты при неизвестной фазе  

и использовании инвариантного  преобразования 

При каждом измерении частоты это преобразование использу-
ется дважды. Один раз преобразование (20) применяется к 
анализируемому сигналу, второй раз к опорному сигналу. Од-
нако преобразование (20), что очевидно, приводит к увеличе-
нию влияния шума. Найти границы Рао-Крамера для этого 
случая не представляется возможным. Результаты моделиро-
вания приведены на рис. 5 и 6. Пунктирные графики (2, 4 и 6) 
получены при использовании инвариантного преобразования. 
Остальные условия проведения моделирования остались теми 
же самыми, что и при получении выше графиков. 

Из графиков видно, что при использовании инвариантного 
преобразования дисперсия оценки частоты заметно увеличи-
вается лишь для очень малых относительных частот. Диспер-
сия оценки фазы увеличивается более существенно.  

Заключение 
В работе получены соотношения, позволяющие опреде-

лить границы Рао-Крамера для совместных и раздельных оце-
нок относительной частоты, начальной фазы и амплитуды 
гармонического сигнала, представленного короткой выборкой. 
Под короткой выборкой в работе понимается сигнал, реализа-
ция которого содержит доли и единицы периода. Результаты 
расчетов по полученным выражениям совпадают с результа-
тами моделирования. Проведено моделирование процедуры 
оценки относительной частоты и фазы сигнала при использо-
вании преобразования, инвариантного к амплитуде сигнала.  
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