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Предложено использовать гидроакустический канал связи для 
передачи речевых сигналов между подводными обитаемыми аппа-
ратами, водолазами и инфраструктурой. Проведен расчет пара-
метров гидроакустического канала передачи данных, получены 
зависимости максимальной протяженности трассы от скорости 
передачи данных. В работе показано, что применение модифика-
ции алгоритма Хургина-Яковлева в адаптивных помехоустойчи-
вых подводных системах связи позволяет повысить качество 
восстановленной речи на выходе системы передачи при действии 
помех в канале связи. Применение систем на основе модификации 
алгоритма Хургина-Яковлева позволяет повысить дальность 
передачи информации при действии помех в канале подводной 
связи. Компьютерное моделирование показало, что выигрыш по 
расстоянию при использовании модификации данного алгоритма 
составляет от 75 км, при полосе частот от 1 до 6,3 кГц и аку-
стической несущей от 3,3 до 21 кГц при заданных исходных 
данных. 
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Введение  

Гидроакустические каналы передачи данных 
используют отличаются от традиционных радио-
каналов тем, что используют энергию акустиче-
ских колебаний. В условиях подводной среды, 
они обладают важным достоинством, по сравне-
нию с радиоканалом и оптическим каналов: ма-
лое затухание, дающее возможность установле-
ния связи на значительные дистанции. Вслед-
ствие этого имеют лучшие энергетические харак-
теристики, компактные излучатели и широкую 
сферу применения, в том числе с их помощью 
возможно осуществлять связь, управление и пе-
редачу телеметрической информации. Основных 
недостатков можно отметить два, во-первых, узкая по-
лоса частот, составляющая десятки килогерц, во-
вторых, скорость распространения акустического сигна-
ла в воде составляет в среднем 1500 м/с, что является 
причиной больших задержек в передаче данных. 

В процессе освоения Мирового океана всё актуаль-
нее становиться проблема организации беспроводной 
речевой связи между подводными аппаратами, водола-
зами и объектами инфраструктуры. Речевой сигнал 
подвергается искажениям и может быть не распознан 
слушателем на приёмном конце, что может иметь кри-
тическое значение для безопасности при проведении 
подводных работ, поэтому для повышения качества 
восстановленной речи в канале связи или для повыше-
ния дальности передачи при действии шумов в канале 
связи предложено применение модификации алгоритма 
Хургина-Яковлева. Данное представление обеспечива-
ет передачу отсчетов сигнала и его производной по ка-

налу связи с последующим восстановлением на прие-
ме. Фазовый сдвиг между отсчетами сигнала и его про-
изводных позволяет увеличить помехоустойчивость 
передаваемого речевого сигнала.  

Целью работы является исследование гидроаку-
стического канала передачи речевых сигналов на осно-
ве модификации алгоритма Хургина-Яковлева в инте-
ресах повышения качества восстановленной речи в 
условиях подводной шумовой обстановки. 

Расчёт параметров гидроакустического канала 
передачи данных 

В рамках исследования рассматриваются речевые 
кодеки на основе алгоритма Хургина-Яковлева, ско-
рость передачи данных которыми составляет от 1 до 6,3 
кбит/с. Для расчёта параметров гидроакустического 
канала передачи данных необходимо, на первом этапе, 
определить полосу частот сигнала и выбрать несущую 
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частоту. Оценка ширины полосы частот осуществляется 
для данного вида модуляции, например при кодоим-
пульсной модуляции скорость передачи данных 0R  и 

требуемая ширина полосы частот Af  связаны форму-
лой: 

0 / 3.AR f   
В работах [1-3] показано, что так как преобладаю-

щим видом помех, действующих в гидроакустическом 
канале передачи данных, являются аддитивные помехи, 
близкие по своим характеристикам к белому гауссов-
скому шуму, то наибольшую помехоустойчивость в гид-
роакустических каналах обеспечивают ортогональные и 
противоположные сигналы, к каковым можно отнести 
MFSK, QPSK, OFDM, DPSK, QAM и другие. В соответ-
ствии с теоремой Шеннона, пропускная способность 
канала передачи данных, в этом случае равна: 

2log (1 ),AC f ОСШ    
где ОСШ – отношение сигнал-шум. 

При использовании DPSK требуемая полоса частот 
составляет в предельном случае [3]: 

0 ,AR f   
таким образом оценку полосы пропускания антенн гид-
роакустического канала ,AАf  можно произвести по 
формуле [3]: 

1/ 2 ,AА Э Д АЧХf f f       (1) 

где Э  – длительность передачи одного символа, с;  

Дf  – доплеровское смещение рабочей частоты, дости-
гающее в ГАК 0,001 от величины центральной частоты 

,Af  Гц; АЧХf  – технологический разброс частотных 
характеристик гидроакустических антенн, который со-
ставляет 500-600 Гц [3]. 

Задав полосу акустического сигнала равной 30 % от 
центральной частоты ,Af  получим, что при заданных ско-
ростях передачи данных от 1 до 6,3 кбит/с центральная 
частота будет меняться в интервале 3,3...21Af  кГц. 
Тогда в соответствии с формулой (1) требуемая полоса 
гидроакустической антенны AАf  составит от 33 % до 
48 % от центральной частоты. 

В задаче энергетического расчёта гидроакустическо-
го канала передачи данных существует понятие опти-
мальной частоты ОПТf  [кГц], которая определяется по 
формуле [3]: 

2/362( ) ,ОПТ mf L   (2) 

где mL  – длина трассы, км. 

Учитывая формулу (2) максимальную рекомендуе-
мую протяженность трассы передачи данных, с учетом 

Af  [Гц]  можно выразить: 
2/3( / 62000) .m АL f   (3) 

Зависимость максимальной протяженности трассы 
от скорости передачи данных (рис. 1). 

Расчёт показывает изменение дальности в 16 раз, при 
вариации скорости кодека от 1 до 6,3 кбит/с. Таким обра-
зом, применение широкополосной гидроакустической ан-
тенны в связке с технической возможностью изменения 

несущей акустической частоты Af  позволяет осуществ-
лять адаптивное изменение скорости речевого кодека, в 
зависимости от расстояния. 

 
Рис. 1.  Зависимость максимальной протяженности трассы 

от скорости передачи данных 

Для оценки коэффициента затухания ГАК  в гидроаку-
стическом канале применяется эмпирическая формула, 
известная, как формула Торпа [4]: 

2 2 2

2 2 2

40 0,1 0,03
,
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  (4) 

где Af  – выражено в кГц.  

Данная формула имеет ряд ограничений, она справед-
лива при температуре морской воды равной 4°С и кислот-
ности pH = 8,0, хотя зависимость коэффициента затухания 

ГАК  от этих параметров незначительна. Необходимо 
учитывать, что распространение звука в воде имеет мно-
голучевой характер, а акустические свойства морской во-
ды зависят от ряда факторов, поддающихся прогнозиро-
ванию, таких как плотность, солёность, температура, глу-
бина и т.д.,  и не поддающихся прогнозированию газовые 
пузырьки, планктон, различные подводные течения и т.д.  

Усреднённое значение затухания ГАК  акустических 
колебаний в морской воде аппроксимируется выражением 
[3]: 

3/ 20, 036 .ГАК Аf    (5) 
Сравнение результатов расчёта выполненных по 

формулам (4) и (5) показано на рис. 2. 

 
Рис. 2.  Зависимости коэффициента пространственного 

затухания ГАК  от скорости передачи данных  
с учётом формул (4) и (5) 

Результаты расчета показывают, что на малых ско-
ростях, с учётом адаптивного изменения частоты, уро-
вень затухания практически не отличается, однако сле-
дует учесть, что использование усредненных потерь на 
значительных  расстояниях  предпочтительнее,  так  как 
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Таблица 1. Параметры гидроакустического канала передачи данных 

R0, кбит/с Lm, км ГАК , дБ/км ГАК , 1/км Af , кГц Af , кГц AАf  
1 80 0,22 0,05 3,3 1 1,6 

1,2 61 0,29 0,06 4 1,2 1,8 
2 28,4 0,62 0,14 6,7 2 2,6 

2,4 21,6 0,81 0,9 8 2,4 3 
4,8 7,6 2,3 0,53 16 4,8 5,4 
5,3 6,6 2,7 0,62 17,7 5,3 5,9 
6 5,5 3,2 0,74 20 6 6,6 

6,3 5,1 3,5 0,8 21 6,3 6,9 
Таблица 2. Оценка качества восстановленной речи для различных систем передачи данных  

при разной вероятности ошибок в канале связи на расстоянии 27 км 

R0, кбит/с 1 1,2 2 2,4 4,8 5,3 6 6,3 
BER 0,002 0,004 0,02 0,03 0,093 0,104 0,118 0,124 

Таблица 3. Оценка качества восстановленной речи для различных систем передачи данных  
при разной вероятности ошибок в канале связи на оптимальном расстоянии 

R0, кбит/с 1 1,2 2 2,4 4,8 5,3 6 
Lm, км 80 61 28,4 21,6 7,6 6,6 5,5 
BER 0,27 0,2 0,03 0,0069 810  102,2 10  135 10  

 

эта формула учитывает многолучевой характер распро-
странения акустических волн. 

Средняя мощность акустического сигнала, с учётом 
расходимости волны в пространстве .с вхP  2[ / ]Вт м  
равна [3]: 
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где ПрДP  – мощность акустического передатчика, Вт; 

ПрДG  – коэффициент усиления передающей гидроаку-

стической антенны; ГАК  – коэффициент затухания 

ГАК  выраженный в 1/км; 
2

4
A ПрМ
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S


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


 – эффектив-

ная площадь приёмной антенны, м2; ПрДG  – коэффици-
ент усиления приемной гидроакустической антенны;  

A  – длина акустической волны, м. 

В результате для гидроакустического канала переда-
чи данных рассчитаны следующие параметры (табл. 1). 

Итоговое отношение сигнал-шум определяется по 
формуле [3]: 
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где N  – спектральная интенсивность шума, Вт/(м2·Гц). 

Спектральная интенсивность шума зависит от мно-
гих факторов, случайных и прогнозируемых, поэтому 
его численная оценка затруднительна и должна быть 
привязана к конкретному месту эксплуатации [4, 5], с 
учётом реальных измерений. Зависимость отношения 
сигнал-шум от скорости передачи данных в предложен-
ном адаптивном гидроакустическом канале при мощно-
сти излучателя равной 1 Вт и частоте несущей 21 кГц в 
зоне умеренного судоходства (шумовая составляющая 
рассчитана по методике [5]) показана на рис. 3. 

 
Рис. 3. Зависимости вероятности битовой ошибки  

от скорости передачи данных  
при волнении моря 0, 3 и 6 баллов 

Из графиков видно, что зависимости имеют сложный 
характер, увеличение скорости передачи с одной сто-
роны способствует расширению полосы канала, что 
приводит к уменьшению ОСШ, с другой стороны умень-
шается уровень фоновых шумов, что способствует уве-
личению ОСШ. Из формы кривой видно, что при увели-
чении волнения моря шумы начинают оказывать суще-
ственное влияние на работу гидроакустического канала 
передачи данных. Рассчитаем вероятность битовой 
ошибки при ОСШ соответствующем 6 бальному шторму, 
то есть когда передача данных производится в условиях 
значительной зашумленности на частоте 21 кГц для 
модуляции DPSK на усредненном расстоянии из табл. 1 
(табл. 2) и на оптимальном расстоянии (табл. 3). 
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Повышение качества восстановленной речи  
в подводном канале связи 

Рассмотрим возможности повышения качества вос-
становленной речи в первичных кодеках при действии 
помех в канале связи на основе модификации алгорит-
ма Хургина-Яковлева [6, 7]. Предложенная модифика-
ция обеспечивает возможность параллельной обработ-
ки отсчетов сигнала, за счет разложения его на проре-
женные отсчеты сигнала и его производных. Кроме того, 
данное представление обеспечит повышение помехо-
устойчивости за счет наличия фазового сдвига между 
отсчетами сигнала и его производных. На основе данно-
го представления целесообразно построение адаптив-
ных кодеков РС, обеспечивающих повышение качества 
восстановленной речи при действии помех в канале 
связи. В более ранних работах [8…14] проанализирова-
но построение адаптивных кодеков на основе модифи-
кации алгоритма Хургина-Яковлева при двухканальной 
обработке N = 2. Показано, что применение данных ко-
деков обеспечивает выигрыш в качестве восстановлен-
ной речи на уровне до 0,2…0,3 баллов согласно ГОСТ Р 
50840-95, что зачастую оказывается недостаточно для 
систем передачи речевой информации.  

Рассмотрим воздействие шумов в канале связи на 
стандартные среднескоростные и низкоскоростные коде-
ки на основе теоремы В.А. Котельникова. Для построения 
адаптивных первичных кодеков на основе теоремы В.А. 
Котельникова необходимо провести исследование воз-
действия помех в канале связи, обеспечивающих веро-
ятность ошибки Pe на качество речи на выходе первич-
ных кодеков и осуществить выбор алгоритмов кодирова-
ния обеспечивающих наилучшее качество в рамках 
определенных диапазонов скоростей передачи. Для раз-
работки соответствующих рекомендаций проведены ис-
следования известных кодеков РС при действии помех и 
искажений в канале. В качестве модели искажений при-
нята известная в литературе модель, когда биты переда-
ваемой информации искажаются с вероятностью Pe по 
случайному закону. Для оценки качества речи использо-
вались десять тестовых акустически взвешенных фраз, 
приведенных в ГОСТ Р 50840-95.  

Речевой материал записан десятью дикторами 
(3 женщины и 7 мужчин). Запись РС осуществлялась в 

специальном помещении кабинетного типа (с размера-
ми 5,7*2,9*3 м и временем реверберации порядка 350 
мс) при наличии естественного фонового шума слабого 
уровня. Для записи использовался профессиональный 
диктофон Olimpus LS-10 (Linear PCM recorder), обеспе-
чивающий возможность записи РС в формате WAV со 
следующими параметрами: частота дискретизации – 
44,1 кГц; разрядность квантования – 16 бит; тип кодиро-
вания – ИКМ. Диктофон был установлен на расстоянии 
0,5 м перед диктором на уровне его лица. Для исследо-
ваний выбраны наиболее часто используемые в насто-
ящее время кодеки: LBRAMR (1 кбит/с), LBRAMR 
(1,2 кбит/с), MMBE (1,2 кбит/с), LBRAMR (2 кбит/с), 
LBRAMR (2,4 кбит/с), MMBE (2,4 кбит/с), ICELP 
(4,8 кбит/с), G.723.1 (5,3 кбит/с), ICELP (6 кбит/с), 
G.723.1 (6,3 кбит/с), G 729a (8 кбит/с). 

В ходе экспериментальных исследований проведена 
оценка качества речи на выходе различных групп коде-
ков: низкоскоростных (1…2,4 кбит/с) и среднескорост-
ных (4,8…8 кбит/с). Графики качества восстановленной 
речи в зависимости от вероятности ошибки в канале 
связи Pe приведены на рис. 4. На рис. 4, а приведены 
зависимости качества для низкоскоростных кодеков6 
под цифрой 1 – LBRAMR (1 кбит/с), под цифрой 2 – ко-
дек LBRAMR (1,2 кбит/с), под цифрой 3 – кодек MMBE 
(1,2 кбит/с), под цифрой 4 – бит/с).  

На рис. 4, б приведены аналогичные зависимости 
для среднескоростных кодеков: под цифрой 1 – кодек 
ICELP (4,8 кбит/с), под цифрой 2 – кодек G.723.1 
(5,3 кбит/с), под цифрой 3 – кодек ICELP (6 кбит/с), под 
цифрой 4 – G.723.1 (6,3 кбит/с), под цифрой 5 – G 729a 
(8 кбит/с). 

Выбраны алгоритмы первичного кодирования, обес-
печивающие лучшее качество восстановленной речи на 
выходе кодека для своей группы. При приблизительно 
равных оценках качества восстановленной речи (поряд-
ка 0,1…0,2 баллов согласно ГОСТ Р 50840-95) предпо-
чтение отдавалось алгоритмам кодирования с 
наименьшей скоростью передачи. Результаты экспери-
ментальных исследований алгоритмов первичного ко-
дирования для программно-конфигурируемых радиоси-
стем приема, передачи и обработки информации при-
ведены в табл. 4 и 5. 

 
 а) б) 

Рис. 4. Зависимости качества восстановленной речи от вероятности ошибки Рe для низкоскоростных кодеков  
на основе теоремы В.А. Котельникова 
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 а) б) 

Рис. 5. Выигрыш качества восстановления речевых сигналов условиях помех в канале связи  
при использовании низкоскоростных кодеков (а), среднескоростных кодеков (б)  

Рассмотрим воздействие шумов в канале связи на 
качество речи на первичный кодек на основе модифи-
кации алгоритма Хургина-Яковлева при трехканальной 
реализации N = 3. 

Таблица 4. Алгоритмы первичного кодирования РС, обеспе-
чивающие наибольшее качество речи при действии помех в 

канале связи для низкоскоростных кодеков  

Рош,% Кодек, наиболее устойчивый к помехам 
0 LBRAMR 1 кбит/с. 
1 LBRAMR 1 кбит/с. 
2 MMBE 1.2 кбит/с. 
3 MMBE 2,4 кбит/с. 
5 MMBE 2.4 кбит/с. 

Таблица 5. Алгоритмы первичного кодирования РС, обеспе-
чивающие наибольшее качество речи при действии помех в 

канале связи для среднескоростных кодеков 

Рош,
%  

Кодек, наиболее устойчивый к поме-
хам 

0 ICELP 6 кбит/с. 
1 G.729a 8 кбит/с. 
2 G.729a 8 кбит/с. 
3 G.729a 8 кбит/с. 
5 G.729a 8 кбит/с. 

На рис. 5, а представлены зависимости выигрыша 
качества восстановленной речи на выходе разработан-
ной системы от вероятности ошибок (Ре %) на канале 
связи при использовании следующих низкоскоростных 
кодеков (под цифрой 1 показан кодек MMBE со скоро-
стью передачи 1,2 кбит/с; под цифрой 2 – кодек MMBE 
со скоростью передачи 2,4 кбит/с; под цифрой 3 – кодек 
LBRAMR со скоростью передачи 1 кбит/с; под цифрой  
4 – кодек LBRAMR со скоростью передачи 1,2 кбит/с; 
под цифрой 5 – кодек LBRAMR со скоростью передачи 
2,4 кбит/с),  

На рис. 5, б представлены зависимости качества 
восстановленной речи для среднескоростных кодеков 
(под цифрой 6 – кодек G.723.1 со скоростью передачи 
5,3 кбит/с; под цифрой 7 – кодек G.723.1 со скоростью 
передачи 6,3 кбит/с; под цифрой 8 – кодек G.729a со 
скоростью передачи 8 кбит/с; под цифрой 9 – кодек 

ICELP со скоростью передачи 4,8 кбит/с; под цифрой  
10 –  кодек ICELP со скоростью передачи 6 кбит/с). 

Полученные результаты представляет собой сред-
нюю оценку качества восстановления РС. Сравнение 
качества восстановления сигнала системы, построен-
ной на основе модификации алгоритма Хургина-
Яковлева, с системой на основе теоремы В.А. Котель-
никова выражается через выигрыш качества 3К   

3 .Х КК К   Анализ рис. 5 позволяет сделать вывод, 
что использование различных алгоритмов первичного 
кодирования РС оказывает значительное влияние на 
качество восстановления сигнала после его передачи 
по зашумлённым каналам: 

Как видно из приведенных зависимостей, примене-
ние модификации алгоритма Хургина-Яковлева при 
трехканальной обработке позволяет увеличить качество 
восстановленной речи до 0,5 баллов согласно ГОСТ Р 
50840-95, что позволяет повысить качество восстанов-
ленной речи на приеме. Кроме того, показано, что при-
менение модификации алгоритма Хургина-Яковлева 
позволит повысить дальность помехоустойчивой пере-
дачи на 75 км.  

Аналогичные выводы справедливы для других под-
водных систем связи [16…18]. 

Заключение 

В результате исследований показано, что примене-
ние модификации алгоритма Хургина-Яковлева в си-
стемах помехоустойчивой подводной связи позволит 
повысить качество восстановленной речи на 0,3…0,5 
согласно ГОСТ Р 50840-95 при действии помех в канале 
связи до 5 % или повысить дальность передачи на 
75 км (меньше уровень помех на 2 %). 

Работа выполнена в рамках государственного зада-
ния Министерства науки и высшего образования РФ 
(FSSN-2020-0003). 
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Шарамет А.В. 
Информационное обеспечение систем защиты летательных аппаратов от 
управляющих средств поражения: Научное издание, М.: Изд-во «Горячая 
линия-Телеком», 2023 г. 178 с.: ил. 

Рассмотрены вопросы повышения информативности бортового комплекса 
обороны летательного аппарата для увеличения эффективности его защиты от 
управляемого ракетного оружия за счет согласованного помехового, манев-
ренного и огневого противодействия. Изложены и систематизированы основ-
ные проблемы по защите летательного аппарата от управляемых средств по-
ражения, а также рассмотрены основные пути повышения эффективности его 
защиты от них. Даны оценочные расчеты отражательных свойств головок са-
монаведения управляемых ракет класса «воздух-воздух» и «земля-воздух», 
как объектов радиолокационного наблюдения.  Представлено описание и про- 

веден анализ результатов полунатурного экспериментального исследования. На основе векторно-
алгебраического подхода к формализации задач определения координат объектов в многопозиционной 
измерительной системе проведен синтез алгоритма оценки декартовых координат атакующей ракеты по 
суммарно-дальномерной информации.  

Для специалистов, занимающихся вопросами защиты летательных аппаратов, научных работников 
и инженеров. Может быть полезна аспирантам и студентам вузов. 

 
 


