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Предложен подход к коррекции автономной навигационной си-
стемы при сопровождении движущегося объекта. Подход основан 
на классификации особых точек эталонного и текущего изображе-
ния местности для коррекции движения объекта и отличается 
наличием критерия классификации по минимуму квадрата нормы 
вектора ошибок сопряжения пар особых точек. Целью работы яв-
ляется развитие метода анализа опорных точек, полученных на 
базе оптических и радиолокационных изображений местности в 
автономной навигационной системе. Предложен алгоритм коррек-
ции движения объекта, позволяющий использовать вместо корре-
ляционной функции быстрые матричные операции решения линей-
ных алгебраических уравнений, учитывать пространственную ори-
ентацию объекта, определять вектор направления движения объ-
екта к расчетному положению в текущие моменты времени по 
экстраполированной траектории и совмещать работу бортовой 
РЛС с работой оптической станции. 

УДК 621.371 

ПОДХОД К КОРРЕКЦИИ АВТОНОМНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 

Клочко В.К., д.т.н., профессор РГРТУ им. В.Ф. Уткина, e-mail: klochkovk@mail.ru 
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Введение 

Последнее десятилетие беспилотные лета-
тельные аппараты и их навигация являются 
объектами повышенного внимания, о чем сви-
детельствует поток публикаций на эту тему, 
например [1 − 3]. При разработке современных 
навигационных систем для беспилотных лета-
тельных, наземных, водных и подводных аппа-
ратов стоит задача совершенствования суще-
ствующих методов навигации [4, 5] для их при-
менения в условиях автономного движения без 
поддержки спутниковых и радионавигационных 
данных. Применение в таких условиях инерци-
альных навигационных систем ограничено, так как они 
имеют свойство накапливать погрешности. Существует 
множество научных и практических работ, посвященных 
системам автономной навигации. Наибольшее распро-
странение на практике получили корреляционно-
экстремальные системы навигации (КЭСН), основанные 
на обработке оптических, тепловых и радиоизображе-
ний [6]. Известно большое количество методов решения 
задач КЭСН: методы анализа оптического потока; мето-
ды морфологического анализа изображений; методы, 
основанные на сопоставлении изображений в целом; 
методы, основанные на сопоставлении элементов (осо-
бых точек) и локальных участков изображений.  Пре-
имущество последних методов (анализ особых точек) 
состоит в использовании инвариантного описания изоб-
ражений, позволяющего сопровождать объекты в усло-
виях взаимных геометрических преобразований текуще-
го и эталонного изображений, например [7 − 10]. 
Направлению анализа особых точек для коррекции тра-
ектории движения летательных аппаратов (ЛА) в авто-

номных КЭНС придерживается данная работа. 
Целью работы является развитие метода анализа 

опорных точек, полученных на базе оптических и радио-
изображений местности в автономной навигационной 
системе. Предлагается подход, заключающийся в кор-
рекции траектории движения ЛА на основе сопоставле-
ния опорных точек эталонного изображения (ЭИ) и те-
кущего изображения  (ТИ) по определенному критерию 
сопряжения. 

Анализ известного подхода  

Рассмотрим подход к построению автономной КЭСН, 
основанный на сравнении текущего и эталонного изоб-
ражений местности и вычислении поправок горизон-
тальных смещений ЛА при наличии измерений высоты 
полета [4]. Эти поправки учитываются при коррекции 
траектории движения ЛА.  

Алгоритмически подход сводится к следующему.  
1. По электронной карте местности, представляющей 

ЭИ в прямоугольной наземной системе координат 
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1 1 1 1O X Y Z  рассчитывается траектория движения ЛА в виде 

зависимости координат 1 1 1( ), ( ), ( )x t y t z t  точки положения 

ЛА 1 1 1 1( , , )M x y z  от времени ,t  где 1 1( ) ( )z t h t  − высота 
полета. 

2. Формируется плоское (двумерное) радио-ТИ участка 
местности с помощью бортовой РЛС или двумерное опти-
ческое ТИ с помощью оптической станции в текущий мо-
мент времени t в системе координат ЛА 2 2 2 ,O X Y  где точка 

2O  совпадает с точкой 2 2 2 2( , , )M x y z  положения ЛА в 
момент времени t  в наземной системе координат 

1 1 1 1.O X Y Z  

3. Измеряется высота полета ЛА 2 ( )h t с помощью бор-

товой аппаратуры и с учетом 2 1( ) ( )h h t h t    масштаби-
руется ТИ по отношению к ЭИ.  

4. Изображения ЭИ и ТИ совмещаются и вычисляется 
корреляционная функция ( , ),f x y   зависящая от гори-

зонтальных смещений 2 1( ) ( ) ( )x t x t x t    и ( )y t   

2 1( ) ( )y t y t   ТИ относительно ЭИ в системе координат 

1 1 1 1.O X Y Z  

5. Находятся экстремальные значения  * ( )x t  и 
* ( ),y t  на которых достигается наибольшее значение 

функции * *
наиб ( , )f f x y   . 

6. Осуществляется коррекция движения ЛА путем из-
менения высоты 2 ( )h t  во времени t  до расчетного значе-

ния 1( )h t  и изменения положения ЛА от точки 2 2 2( , )O x y  

до расчетной точки 1 1 1( , ),O x y  совпадающей с 

1 1 1 1( , , ),M x y z  в системе координат 1 1 1 1,O X Y Z  где 
*

1 2( ) ( ) ( )x t x t x t    и *
1 2( ) ( ) ( ).y t y t y t    

Отметим недостатки данного подхода. 
1. Вычисление корреляционной функции на основе 

изображений местности требует больших вычислитель-
ных затрат. 

2. Пространственная ориентация ЛА в системе коорди-

нат 1 1 1 1O X Y Z  не учитывается, что не позволяет правильно 
совмещать ЭИ и ТИ с учетом угловых отклонений системы 
координат 2 2 2 2ZO X Y  относительно 1 1 1 1O X Y Z .    

3. Отсутствует информация о направлении движения 
ЛА по результатам коррекции положения ЛА. 

4. В случае использования РЛС работа станции ве-
дется непрерывно в активном режиме излучения зонди-
рующего сигнала и подвержена внешним радиопомехам. 

Предлагаемый подход 

Для устранения указанных недостатков предлагается 
следующий подход. 

1. Рассчитывается траектория движения ЛА по элек-
тронной карте местности (ЭИ) в виде зависимости коорди-
нат 1 1 1( ), ( ), ( )x t y t z t  положения ЛА 1 1 1 1( , , )O x y z  во време-

ни t  в наземной системе координат 1 1 1 1.O X Y Z  

2. Включается периодически бортовая РЛС, форми-
руется радио-ТИ и после этого РЛС временно выключа-
ется. 

3. По определенному правилу [7 − 10] находятся опор-

ные точки 1( ),M i  11, ,i n  в количестве 1n  в трехмерной 

системе координат 1 1 1 1O X Y Z  ЭИ и по такому же правилу 

находятся опорные точки 2 2 2 2 2( ) ( , , ),M j M x y z  21, ,j n  

в количестве 2n  в трехмерной системе координат 

2 2 2 2ZO X Y  ТИ. 

4. Осуществляется перебор k-х вариантов соединения 

точек 1( ),M i  11, ,i n  и 2 ( ),M j  21, ,j n  в km  непересе-

кающихся сопряженных пар 1( )M i  и 2 ( ),iM j  где номер ij  

поставлен в соответствие номеру ,i  1, ,ki m  

1 2min( , ),km n n  12.km   

5.  Для каждого k-го варианта соединения сопрягаемых 

пар координаты точек 1( ),M i  1, ,ki m  помещаются в 

3 1km   – вектор ,kY  а координаты соответствующих им 

точек 2 ( )iM j  помещаются  в 3 12km  -матрицу :kX  

1
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где дополнительно в составе 3 12 -матрицы kiX  распо-

ложены еще 3 последние столбца  1 0 0 ,T  

 0 1 0 ,T   0 0 1 .T  

Затем вычисляется 12 1 -вектор kP  параметров ори-
ентации ТИ относительно ЭИ по формуле  

1( ) ,T T
k k k k kP X X X Y   (1) 

где в составе 1 2 9( , ,..., , , , )T
k x y zP p p p b b b  находятся 9 

параметров матрицы kH  поворота осей системы 

2 2 2 2O X Y Z  относительно 1 1 1 1 :O X Y Z  

1 2 3

4 5 6

7 8 9

k

p p p
H p p p

p p p

 
   
  

 

и 3 координаты вектора ( , , ) ,T
k x y zb b b b  соединяющего 

точки 1O  и 2.O  
6. В каждом k-м варианте соединения опорных то-

чек 1( )M i  и 2 ( )iM j  в i-й паре вычисляется показатель 
сопряжения  
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1 2

1 2

( ( ) ( ) )
( ( ) ( ) )

T
ik k i k

k i k

J M i H M j b
M i H M j b
   

  
  (2) 

и суммарный показатель 
1

m

k ki
i

J J


 . 

7. Выбирается *k -й вариант соединения опорных то-
чек с наименьшим значением показателя *k

J  при условии 

* ,
k

J   где   − заданный порог, и запоминаются матри-

ца *k
H  и вектор * .

k
b  

8. Включается оптическая станция и формируется оп-
тическое ТИ. Находятся по определенному правилу на ЭИ 
опорные точки в трехмерной системе координат ЭИ, а 
также опорные точки в двумерной системе координат ТИ. 
Двумерные координаты опорных точек ТИ переводятся в 
трехмерные координаты ортов векторов направлений в 
системе координат 2 2 2 2Z .O X Y  

9. Осуществляется перебор k-х вариантов соединения 
опорных точек ЭИ и ортов векторов направлений ТИ в km  

сопрягаемых пар ( 12),km   при этом в каждом k-м вари-
анте для каждой сопрягаемой пары вычисляются трех-
мерные координаты опорной точки ТИ по формуле  

ТИ ˆ ,M ra  * *ˆ ( ),T T
ЭИk k

r a H M b    

где ЭИM  − опорная точка ЭИ, a  − 3 1 -орт вектора 

направления ТИ; r̂  − оценка дальности до опорной точки 
в системе координат ТИ. 

10. Помещаются координаты опорных точек ЭИ в 
3 1km  -вектор ,kY  а координаты опорных точек ТИ в 

3 12km  -матрицу ,kX  и вычисляется 12 1 -вектор kP  
параметров ориентации ТИ относительно ЭИ по фор-
муле (1).  

11. Выбирается *k -й вариант соединения опорных то-
чек с наименьшим значением показателя сопряжения * ,

k
J  

после чего последние три элемента матрицы *k
P  поме-

щаются в базовый вектор * ,
k

b  и движение ЛА направляет-

ся по вектору * .
k

b  Затем по истечение заданного перио-

да времени вновь включается РЛС и все операции 
пп. 2 − 11 периодически повторяются. 

12. Если условия наблюдения не позволяют использо-
вать оптико-электронную станцию, то работу продолжает 
РЛС с периодическим отключением, за время которого 
движение ЛА осуществляется по экстраполированной тра-
ектории в направлении вектора .kb  

Обоснование подхода 
При использовании РЛС, работающей в режиме синте-

зирования апертуры [11], на земной поверхности форми-
руется сетка с линиями уровня дальности, угла места и 
азимута. Сферические координаты центров ячеек сетки 
пересчитываются к прямоугольные координаты системы 

2 2 2 2O X Y Z  ТИ. На ЭИ также определяются по определен-
ному правилу опорные точки, которые сопрягаются с 
опорными точками ТИ в системе координат 1 1 1 1O X Y Z . 

Пусть в k-м варианте сопряжения вектор 2 ( )iM j   

2 2 2( ( ), ( ), ( )) ,T
i i ix j y j z j  определенный в системе коор-

динат 2 2 2 2 ,O X Y Z  поставлен в соответствие вектору 

1 1 1 1( ) ( ( ), ( ), ( )) ,TM i x i y i z i  определенному в системе ко-

ординат 1 1 1 1.O X Y Z  Запишем условие линейной зависимо-
сти векторов или связи их координат с точностью до слу-
чайного вектора ошибок сопряжения ( , , )T

ki x y ze e e e  в 

системе координат 1 1 1 1O X Y Z : 

1 2( ) ( ) ,k i k kiM i H M j b e    1, .ki m    (3) 
Критерием правильного сопряжения i-й пары векторов 

в k-м варианте возьмем ограничение на квадрат евклидо-
вой нормы вектора ошибок kie  (2): 

2
1 2

1 2

|| || ( ( ) ( ) )
( ( ) ( ) ) .

T
ki ki k i k

k i k i

J e M i H M j b
M i H M j b 
    

   
 

Критерием сопряжения km  пар векторов будет сум-
марный показатель 

1
,

km

k ki
i

J J 


   

где пороги i  и   можно выбрать статистически по крите-
рию хи-квадрат.  

В показателе kiJ  присутствуют 9 + 3 = 12 неизвестных 

параметров ориентации в составе kH  и .kb  Чтобы найти 
оценки параметров алгебраическим способом, систему 
уравнений (3) запишем в виде 

1( ) , 1, , 12,ki k ki k kM i X P e i m m     
или в блочно-матричной форме 

1 1 1

1 , ,

(1)
,

( )
k k

k k k k

k k

k

k k m k m

Y X P E

M X e
P

M m X e

  

    
           
         

 

  
 

где 3 12 -матрицы kiX  определены выше.  

Оценка P̂  неизвестного 12 1 -вектора kP  находится 
из условия минимума квадрата евклидовой нормы блочно-
го вектора ошибок kE  

2 ( ) ( ).T
k k k k k k kJ E Y X P Y X P     

Из необходимого условия существования экстремума 

kJ  по kP  получается оценка k̂P  в (1):    

2( ) ( ) 0 ( ) 0,T T Tk
k k k k k k k k

k

dJ
Y X P X X Y X P

P
        

1ˆ ( ) .T T
k k k k kP X X X Y   

Невырожденность матрицы T
k kX X  обеспечивается ал-

горитмом выбора пар сопряженных опорных точек, в кото-
ром предусматривается линейная независимость строк 
матрицы kX  при выборе этих точек. 

При использовании оптической станции в оптическом 
приемнике пространственное положение точки М в систе-
ме координат 2 2 2 2 ,O X Y Z  совмещенной по центру с цен-
тром оптической линзы, отображается через центр линзы в 
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плоскости oxy  в виде точки m с координатами x, y, кото-
рые находятся известными методами обнаружения и оце-
нивания положения точечных объектов или центра тяже-
сти протяженных объектов в видеокадрах [7].  

Из геометрических соображений координаты орта a 
направления на точку M в системе координат 2 2 2 2O X Y Z  с 
учетом фокусного расстояния f линзы находятся как  

/ | | / ( , , ),x y za oM oM oM r a a a  
    

/ | | / ,xa x om x c   


 

/ | | / ,ya y om y c   


 2 21 / ,z x ya a a f c     

2 2 2 ,с x y f    
или в векторно-матричной форме      

2 2 2( , , ) ( , , ) / .T T
x y za a a a x y f x y f       

Для i-й пары опорных точек ЭИ и ТИ: 1( )M i  и 2 ( ),iM j  

поставленных в соответствие друг другу в k-м варианте 
соединения, уравнение связи координат (сопряжения) за-
пишется как   

1 2 2( ) ( ) ,k i k kiM i r H a j b e    2 2 2( ) ( ),i ir a j M j   

Оценка дальности 2̂r  до опорной точки в системе коор-
динат ТИ находится из условия минимума квадрата нормы 
вектора ошибок  сопряжения kie   

2
1 2 2

1 2 2

( ( ) ( ) )
( ( ) ( ) ),

T
ki ki k i k

k i k

J e M i r H a j b
M i r H a j b
    

  
  (5) 

а именно: 
2

2kdJ
dr

    

1 2 2 2( ( ) ( ) ) ( ( )) 0,T
k i k k iM i r H a j b H a j      

2 1 2 2( ) ( ( ) ( ) ) 0,T T
i k k i ka j H M i r H a j b    

где учитывается, что для ортогональной матрицы :kH  

,T
k kH H I  I  − единичная матрица, и для орта 

2 2( ) ( ) 1.T
i ia j a j   Получается следующая оценка дально-

сти:  

2 2 1ˆ ( ) ( ( ) ).T T
i k kr a j H M i b    (6)  

Оценка (6) подставляется вместо 2r  в выражение по-
казателя (5) , который участвует в сопряжении пар векто-
ров.  

Заключение 

Предложен подход к построению автономной нави-
гационной системы, отличающийся коррекцией движе-
ния ЛА на основе классификации пар опорных точек ЭИ 
и ТИ по определенному критерию сопряжения и позво-
ляющий использовать вместо корреляционной функции 
быстрые матричные операции решения линейных ал-
гебраических уравнений, учитывать пространственную 
ориентацию ЛА, определять вектор направления дви-

жения ЛА к расчетному положению в текущие моменты 
времени по экстраполированной траектории и совме-
щать работу бортовой РЛС с работой оптической стан-
ции при периодическом отключении РЛС, что обеспечи-
вает ее помехозащищенность. 

Дальнейшее исследование направлено на разработ-
ку программно-алгоритмического обеспечения для реа-
лизации предложенного подхода в условиях моделиро-
вания автономной навигационной системы. 

Подход может найти применение в навигационных 
системах сопровождения движущихся объектов разной 
физической природы. 
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