Digital Signal Processing |
Russian |
Randomization of receiving, processing and forming signals in radio channels of communications and location systems Abstract 2. Claude E. Shannon, Warren Weaver. The Mathematical Theory of Communication. Univ of Illinois Press, 1949. 3. Y.P. Borisov, P.I. Penin. Fundamentals multichannel information transmission M., Communication 1967. 435 p. 4. Monzingo R.A, Miller T.W. Adaptive antenna arrays. Introduction to the theory / / M: Radio and communication. 1986. - 448 p. 5. R. Klemm. Space-Time Detection Theory // The material in this publication wa assembled to support a lecture series under the sponsorship of the sensor and lectronics Technology Panel (SET) and the Consultant and Exchange Programmer of RTO presented on 23-24 september 2002 in Moscow, Russia. 6. Metropolis N., Ulam S. The Monte Carlo Metod // J. Amer. Statistical Assoc. 1949. V. 44, ¹247. pp. 335 – 341. 7. Granichin O.N., Polyak B.T. Randomized Algorithms of an Estimation and Optimization Under Almost Arbitrary Noises. - M.: Nauka, 2003. - 393 p. 8. Steven W. Smith The Scientist and Engineer's Guide to Digital Signal Processing. – California Technical Publishing, San Diego, California - Second Edition, 1999 9. Richard G. Lyons, Understanding Digital Signal Processing, 2nd edition, — Pearson Education, Inc., 2006, - p.656. 10. David Middleton, Introduction to Statistical Communication Theory. – McGraw-Hill, New York, 1960. 1140 pp. 11. Gorbunov YU.N. Cifrovye stohasticheskie radary: prinyatie resheniy, stohasticheskoe obelenie pomekh, randomizaciya izmereniy parametrov, primenenie. // Trudy VIII MNTK «Kibernetika i vysokie tekhnologii XXI veka». – Voronezh: NPF «Sakvoee», 2007, t.I.-pp. 446-455. 12. Tomas. Neparametricheskie metody obnaruzheniya signalov. // TIIER. - 1970. - t. 58. - ¹5. – pp. 23 – 31. 13. Gorbunov YU.N. Stohasticheskie kriterii obnaruzheniya signalov. Izd. «Radiotekhnika», zhurnal «Nelineynyy mir», 2016, ¹6, pp.3 - 13. 14. Gorbunov YU.N. Stohasticheskoe vremennoe i prostranstvennoe kvantovanie v ploskih aperturah fazirovannyh antennyh reshetok. // Trudy X MNTK «Radiolokaciya, radionavigaciya i svyaz». – Voronezh: Izd. NPF «Sakvoee», 2005, t. III. - pp. 1790 - 1798. 15. Gorbunov YU.N. Stohasticheskaya interpolyaciya pelenga v adaptivnyh antennyh reshetkah s posledovatelnym diagrammo-obrazovaniem na baze usechennyh (maloelementnyh) apertur i robastnyh statistik signala na vhode // Izdatelstvo «Radiotekhnika», ZHurnal «Antenny», 2015, ¹6, pp. 18-26. 16. Gorbunov YU.N. Snizhenie radiolokacionnoy zametnosti ob"ektov metodami randomizacii parametrov signala i upravlyaemogo antennogo pokrytiya mnogofunkcional'nyh adaptivnyh RLS. Izd. «Radiotekhnika», zhurnal «Antenny», 2016, ¹11, pp. 42 - 50. 17. Gorbunov YU.N. Teorema o stohasticheskoy diskretizacii izobrazheniy v radiolokacii i svyazi. // Trudy 18-y Mezhdunarodnoy Konferencii «Cifrovaya obrabotka signalov i ee primenenie».- M.: RNTORES im. A.S. Popova, 2016, pp. 225-230. 18. Gorbunov YU.N. Randomizaciya usloviy priema i formirovaniya signalov v mnogokanal'nyh doplerovskih informacionnyh sistemah s amplitudnym ogranicheniem // Mezhdunarodnaya konferenciya «Radioelektronnye ustroystva i sistemy dlya infokommunikacionnyh tekhnologiy – REDS-2014». – M.: 2015. pp. 144 – 147. 19. Gorbunov YU.N. O vozmozhnosti umen'sheniya chisla urovney kvantovaniya v cifrovyh filtrah SDC putem primeneniya randomizirovannyh algoritmov. // Radiotekhnika. - 1983, ¹ 6. - pp. 45 – 47. Abstract The operation purpose – development of an algorithm for several objects images estimation in the sequence of review cycles of the scanning radiometric system taking into account timepoints of segments formation. The specific algorithm of the task decision for a finite number of steps – the review periods is offered. The algorithm allows to determine objects images parameters in time, including the parameters of objects movement paths taking into account timepoints of segments formation. Results of modeling the offered algorithm and modeling of its high-speed modification are shown in the computer environment. In case of modeling three moving objects with intersection of movement paths were found with probability, close to unit. Results of operation can find application in the existing scanning radiometric systems for
remote sensing of objects on the land surface. 2. Kuz'min S.Z. Osnovy proektirovaniya sistem cifrovoj obrabotki radiolokacionnoj informacii. M.: Radio i svyaz', 1986. 352 p. 3. Farina A., Studer F. Cifrovaya obrabotka radiolokacionnoj informacii. Soprovozh-denie celej: per. s angl. / Pod red. A.N. YUr'eva, A.M. Bochkareva. M.: Radio i svyaz', 1993. 319 p. 4. Matematicheskie metody vosstanovleniya i obrabotki izobrazhenij v radioteplooptoehlektronnyh sistemah / V. K. Klochko. Ryazan': RGRTU, 2009. 228 p. 5. Metody avtomaticheskogo obnaruzheniya i soprovozhdeniya ob"ektov. Obrabotka izobrazhenij i upravlenie / B.A. Alpatov, P.V. Babayan, O.E. Balashov, A.I. Stepashkin. M.: Radio-tekhnika, 2008. 176 p. 6. Sejdzh EH., Mels Dzh. Teoriya ocenivaniya i ee primenenie v svyazi i upravlenii / Per. s angl. pod red. B. R. Levina. M.: Svyaz', 1976. 496 p.
Abstract References 2. Egoshkin N.A., Eremeev V.V., Zinina I.I., Skirmunt V.K. The concept of refinement of elements of external orientation of spacecraft and its testing on field information from spacecraft "Resurs-DK1" // Proceedings of 2-th International conf. “Actual problems of rocket and space technology – Kozlovskie chtiniya”. Samara, 2011. pp. 216–217. 3. Rim H.J, Yoon S.P., Schutz B.E. The GLAS Algorithm Theoretical Basis Document for Precision Orbit Determination (POD). Center for Space Research. The University of Texas at Aus-tin. October 2002. 111p. 4. Kyohei Akiyama, Shinichi Nakamura, Ryo Nakamura, and Sachiyo Kasho. GPS-Based Precise Orbit Determination for LEO Satellites with Carrier-Phase Integer Ambiguity Resolution, 2012. Web-site http://issfd.org/ISSFD_2014/ISSFD24_Paper_S3-3_akiyama.pdf 5. Guochang Xu. GPS: Theory, Algorithms and Applications. New York: Springer, 2016. 508p. 6. Petit G., Luzum B. IERS Conventions (2010). IERS technical note no. 36, Verlag des bundesamts fur Kartographie und geodasie, Frankfurt am main, 2010. 179p.
Abstract References 2. Multidimensional digital signal processing / Dan E. Dudgeon, Russell M. Mersereau (Englewood Cliffs, 1984) – 488 p. 3. Vlasova. E.A. Series: university textbook. – Moscow.: BMSTU, 2006. – 616 p.
Abstract References 2. Benesty J. and Chen J. Study and Design of Differential Microphone Arrays. – Springer-Verlag Berlin Heidelberg, 2013. 3. Benesty J. Chen J. Huang Y. Microphone Array Signal Processing. – Springer, 2008, 250 p. 4. Monzingo R.A, Miller T.W. Adaptive antenna arrays. Introduction to the theory / / M: Radio and communication. 1986. - 448 p. 5. Fischer S., Kammeyer K., and Simmer K. Adaptive Microphone Arrays for Speech Enhancement in Coherent and Incoherent Noise Fields. Proc. 3rd meeting of the Acoustical Society of America and the Acoustical Society of Japan, 1996, pp.1-30. 6. Buck M., et al. A Compact Microphone Array System with Spatial Post-Filtering Automotive Applications. Proc. ICASSP 2009, pp. 221-224. 7. Li M. Advanced array processing techniques and systems // International Journal of Computer Research, 2009, v.17 (4). pp. 381-414. 8. Krivosheykin A.V., Perelygin S.V. Mikrofonnaya reshetka dlya realizacii napravlennoy akusticheskoy antenny // Izv. vuzov. Priborostroenie. 2015. ¹ 3. pp. 221-225. 9. Dillon H. Background noise – the problem and some solutions, National Acoustic Laboratories (NAL), CRC for Cochlear Implant and Hearing Aid Innovations. 10. Gaokar R., Cheeran A. Performance analysis of beamforming algorithms // International Journal of Electronics and Communication Technology. 2011. V. 2. N 1. pp. 43–48. 11. Lockwood M. et al. Performance of time- and frequency-domain binaural beam formers based on recorded signals from real rooms. J. Acoust. Soc. Am. 115 (1), January 2004, pp.379-391.
2. V.V. Vityazev, Digital frequency selection of signals. Moscow: Radio and communication. 1993. 240 p. 3. Vityazev V.V., Goryushkin R.S. Issledovanie ustoychivosti cifrovyh grebenchatyh filtrov // Trudy 17-y MNTK «Cifrovaya obrabotka signalov i ee primenenie – DSPA 2015», Moskva, IPU RAN, T.1 4. Vityazev V.V., Multirate signal processing. – Ì.: Hot line - Telecom, 2017. – 336 p.
Abstract 2. Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation Authors Bruce H. Dobkin. 14 March 2007 olume 579, Issue 3March 2007 Pages 637–642. The Journal of physiology 3. Interfeys mozg-kompyuter kak novaya tekhnologiya neyroreabilitacii O.A. Mokienko, L.A. CHernikova, A.A. Frolov Nauchnyy centr nevrologii RAMN; Institut vysshey nervnoy deyatelnosti i neyrofiziologii RAN (Moskva). ¹ 3-2011. 4. Michael E. Electrotherpy: shock value. / E. Michael // Nature – 2016 – Vol.538, S10–S12 5. Neurochip: https://www.sciencedaily.com/releases/2010/08/100810094619.htm 7. Neurochip: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064297 8. http://www.nature.com/news/2004/041011/full/news041011-9.html
Abstract PTS technique proves an effective approach in PAPR reduction performance without exhibiting signal distortion. The most important part of PTS schemes is the IFFT blocks. However, C-PTS schemes use the large number of IFFT blocks in parallel processing. Moreover, the hardware resource utilization increases exponentially with the number of IFFT blocks. These PTS schemes cannot be implemented on FPGA, if the input data block is partitioned into large number of subblocks. To reduce the computational complexity with similar PAPR reduction performance compared with C-PTS, we exploit the properties of the IFFT operation: cyclic shift of frequency-domain sequences and property of the frequency-domain down-sampling sequences. Due to these properties of the IFFT operation, M time-domain partial transmit sequences can be computed by using a single N/M-point IFFT block instead of performing M N-point IFFT blocks. 2. T. Jiang and Y. Wu. An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals // IEEE Transactions on Broadcasting, vol. 54, no. 2, pp. 257–268, June 2008. 3. S. H. Muller and J. B. Huber. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences // IEE Electronics Letters, vol. 33, no. 5, pp. 36–69, Feb. 1997. 4. L.J. Cimini, N.R. Sollenberger. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences // IEEE Commun. Letters, vol. 4, no. 3, pp. 86–88, Mar. 2000. 5. C.-L. Wang, S.-S. Wang, H.-L. Chang. A low-complexity SLM based PAPR reduction scheme for SFBC MIMO-OFDM systems // Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Quintana-roo, Mexico, pp. 1449–1453, Mar. 2011. 6. Pg109. Fast Fourier Transform v9.0 // Xilinx LogiCORE IP Product Guide, 97p, Nov. 2015. 7. Pg105, CORDIC v6.0 // Xilinx LogiCORE IP Product Guide, 65 p., Nov. 2016.
Abstract 2. Solonina A.I., Ulakhovich D.A., Arbuzov S.M., Solovev E.B. Bases of digital processing of signals: 2nd edition, — BHV-Petersburg, 2005, - p.768. 3. Yukio Sato, Signal Processing. Getting Started. Dodeka-XXI, 2009, - 176 p.
Abstract 2. Dvorkovich V.P., Dvorkovich A.V., Irtyuga V.A., Tenzina V.V. Novaya audiovizualnaya informacionnaya sistema // Broadcasting. Televidenie i radioveschanie. – 2005, ¹ 5. – pp. 52-56. 3. Korzhihin E.O., Vlasyuk I.V., Metody snizheniya pik-faktora v sistemah nazemnogo cifrovogo televizionnogo veschaniya standarta DVB-T2//T-Comm - Sistemy podvizhnoy svyazi i cifrovogo teleradioveschaniya. Vypusk po itogam 6-y otraslevoy nauchnoy konferencii MTUSI “Tekhnologii informacionnogo obschestva”, M.: «ID Media Pablisher» – 2012, ¹ 9–pp.83-86. 1. ETSI EN 302 755 V1.3.1 (2012-04) Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVBBT2). 5. Tellado, J., Cioffi, J.M., PAR Reduction in Multicarrier Transmission Systems. 6. Grace R. Woo, Douglas L. Jones, Peak Power Reduction in MIMO OFDM via Active Channel Extension // IEEE 2636 - 2639 Vol. 4,16-20 May 2005. 7. Madhuri P., Dr Malleswari B. L.,Peak-To-Average Power Ratio Reduction by CB-ACE and Adaptive Ace Algorithms // ISSN 2250-2459, Volume 2, Issue 2, February 2012. If you have any question please write: info@dspa.ru
|
||