Digital Signal Processing

Russian
Scientific & Technical
Journal


“Digital Signal Processing” No. 3-2020

Digital image processing

In the issue:

- modern approaches in remote sensing data systems
- monitoring of technical conditions of on-board observation satellite systems
- clustering of hyperspectral satellite images
- multiserver processing for remote sensing imagery
- neural networks for color propagation in video
- neural networks for facial recognition systems
- object tracking based on the criterion function analysis
- zero padding in the two-dimensional Fourier signal processing



Modern approaches to organization of processing and providing consumers with high-resolution remote sensing data
Kuznetcov A.E., deputy director of SRI "Photon" RSREU, proff., e-mail: foton@rsreu.ru
Kochergin A.M., senior researcher of SRI "Photon" RSREU, PhD,
e
-mail: foton@rsreu.ru

Laryukov S.A., engineer of SRI "Photon" RSREU, e-mail: foton@rsreu.ru

Keywords: Earth remote sensing, geoportal, browser, map server, WebSocket, cloud service, space monitoring.

Abstract
The paper describes the technical approaches that allow to perform a monitoring and control of processing both operational and archive remote sensing information, to organize remote interaction of consumers with data processing center using the cloud technologies of data processing and storage. This approaches formed the basis of WEB-portal. It’s build on client-server technology including server-side software installed on Internet-server and client-side software executing in a user’s browser.

Server-side software provide following functions: user authentication and registration, performing a search of archive information using a user’s parameters, generation of the cartographic map using a vector data, providing an interface for data acquisition request and archive data processing. Part of server-side software functions was realized using open source software GeoServer and WebSocket Swoole. Also it has been developed a tiling server for processing a requests for raster information (such a high spatial resolution images).

Client-side software provides an interface between user and server-side software. It main functions are: utilizing an interface for user registration and authentication, providing an interface for input parameters for archive data searching, visualizing a search results in table and graphical view, visualizing a multilayer cartographic data and processing results, providing a monitoring of regions of interest and instruments for on-line image processing. Visualization of the cartographical information is performed using the open source library OpenLayers. Real-time data exchange between client-side and server-side software is performed using WebSocket technology.

Using described approaches and technologies has been developed the demo version of geoportal providing functionality for access of consumers to remote sensing data.

References

1. ESA online portal [electronic resource]. — URL: https://scihub.copernicus.eu/dhus/#/home/.

2. ArcGIS [electronic resource]. — URL: https://www.esri.com/ru-ru/arcgis/products/arcgis-online/overview

3. The bank of base products. User manual [electronic resource]. — URL: https://bbp.ntsomz.ru/assets-landing/BBP_Handbook_20201008.pdf.

4. D. Jacobson, G. Brail, D. Woods. APIs: A Strategy Guide. O'Reilly Media, Inc. 2001. 150 p.

5. Geoserver documentation [electronic resource]. — URL http://docs.geoserver.org/latest/en/docguide.

6. Swoole documentation [electronic resource]. — URL: https://www.swoole.co.uk/docs/.

7. OpenLayers [electronic resource] URL: http://openlayers.org/.

8. A.U. Vasil’ev Working with PostgreSQL: tuning and scaling. Creative Commons Attribution-Noncommercial 4.0 International. 2017. 288 p.

9. Export of OpenStreetMap [electronic resource] URL: https://wiki.openstreetmap.org/wiki/RU:Ýêñïîðò/.

10. Ñåðâèñû äîñòàâêè äàííûõ OWS [electronic resource] URL: http://gis-lab.info/qa/ows.html.

11. EOS LandViewer [electronic resource]. — URL: https://eos.com/landviewer/.

12. B. McLaughlin. Head Rush Ajax. — ÑÏá.: Ïèòåð, 2007.

13. RFC 6455 specification [electronic resource]. — URL: https://tools.ietf.org/html/rfc6455

14. Raster Data Optimization [electronic resource]. — URL: https://geoserver.geo-solutions.it/edu/en/enterprise/raster.html.

15. Building and using an image pyramid [electronic resource]. — URL: https://docs.geoserver.org/latest/en/user/tutorials/imagepyramid/ima gepyramid.html.

16. Storing a coverage in a JDBC database [electronic resource]. — URL: https://docs.geoserver.org/stable/en/user/tutorials/imagemosaic-jdbc/imagemosaic-jdbc_tutorial.html.


Monitoring of technical conditions of on-board optical earth observation satellite systems in support of automatical ground-based image processing
G.N. Myatov1, A.A. Yudakov1, P.K. Kuznetsov2, B.V. Martemyanov3, V.V. Eremeev4, A.E. Kuznetsov4
1 Space Rocket Centre “Progress”, Samara, Russia
2 Samara Scientific Center of the Russian Academy of Sciences, Samara, Russia
3 Samara State Technical University, Samara, Russia
4 Ryazan State Radio Engineering University named after V.F. Utkin, Ryazan, Russia

Keywords: earth remote sensing, optical-electronic telescope system, ground data processing, linear resolution, georeferencing accuracy.

Abstract

An integrated approach to the diagnosis of on-board measurement equipment and imaging systems of Earth remote sensing satellites is presented. Two aspects of this technology implementation are investigated. First aspect consists of monitoring and calibration of interior and exterior orientation parameters of satellite and its on-board equipment using reference ground sites. Second approach based on precision analysis of image movement in the focal plane of telescope using functionalization method. This method allows to obtain the spectra of focal plane vibration caused by internal and external disturbances.

Proposed approach is investigated using data from earth remote sensing satellites Resurs-P and Aist-2.

References
1. Krovotyntsev V.A., Uspensky S.A., Semerikov A.N., Leonov M.S. Ground complex Kanopus-V for data receiving, processing and distribution, 2015, URL: jurnal.vniiem.ru/text/148/24-35.pdf.

2. Romashkin V.V. Kompleksy priema, obrabotki, raspredeleniya i dovedeniya do potrebitelei informatsii distantsionnogo zondirovaniya Zemli. Razrabotki OAO «NII TP» dlya kosmicheskogo kompleksa «Resurs-P», 2017, URL: www.niitp.ru/component/content/article/56-dzz.

3. Abramov N.S., Talalayev A.A., Fralenko V.P., Khachumov V.M., Shishkin O.G. The high–performance neural network system for monitoring of state and behavior of spacecraft subsystems by telemetry data, 2017, URL: psta.psiras.ru/read/psta2017_3_109-131.pdf .

4. Akhmetov R. N., Upravlenie zhivuchest’yu nizkoorbital’nykh avtomaticheskikh KA DZZ (Managing of survivability of low-orbit automatic ERS spacecrafts), Aerokosmicheskii kur’er, 2010, No. 6, pp. 2–4.

5. Akhmetov R.N., Makarov V.P., Sollogub A.V. Kontseptsiya avtonomnogo upravleniya zhivuchest'yu avtomaticheskikh kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli v anomal'nykh situatsiyakh. // Mekhanika i mashinostroenie. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2009. No. 3, pp. 165-176.

6. Grodecki J. and Dail G. IKONOS Geometric Accuracy, 2002, URL: https://legacy.satimagingcorp.com/media/pdf/IKONOSGeometricAccuracyValidation-ISPRS202002.pdf.

7. Kwoh L.K., Tan W.J. International Archives of the Photogrammetry, Remote Sensing and Spatial Information, Development of Camera Model and Geometric Calibration/Validation of XSAT IRIS Imagery. 2012. Vol.XXXIX-B1. pp. 239-243.

8. Malthus T., Fuqin Li. Calibration of Optical Satellite and Airborne Sensors, 2014 URL: www.science.org.au/reports/index.

9. Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Actual technologies of Earth remote sensing data processing), Eremeev V. V. (ed.), Moscow: Fizmatlit, 2015, 460 p.

10. Akhmetov R. N., Eremeev V. V., Kuznetsov A. E., Myatov G. N., Poshekhonov V. I., Stratilatov N. R., Vysokotochnaya geodezicheskaya privyazka izobrazhenii zemnoi poverkhnosti ot KA “Resurs-P” (Organization of high-precision geolocation of Earth surface images from the Spacecraft “Resurs-P”), Issledovanie Zemli iz kosmosa, 2017, No. 1, pp. 44–53.

11. Kuznetsov A.E., Presniakov O.A, Myatov G.N. Stitching of remote sensing images from staggered TDI CCD // Digital signal processing, 2015, No. 3, pp. 29–36.

12. Akhmetov R. N., Zinina I. I., Yudakov A. A., Eremeev V. V., Kuznetsov A. E., Poshekhonov V. I., Presnyakov O. A., Svetelkin P. N., Tochnostnye kharakteristiki vykhodnoi produktsii vysokogo razresheniya KA “Resurs-P” (Precision characteristics of high resolution output products from Resurs-P spacecraft), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 41–47.

13. Kuznetsov P.K., Martemyanov B.V., Myatov G.N., Yudakov A.A. Metodika vychis-leniya otsenok parametrov smaza izobrazhenii, poluchaemykh tselevoi apparaturoi KA tipa «Resurs» // Proceedings «Kosmonavtika. Radioelektronika. Geoinformatika». Ryazan: RGRTU. 2017. pp. 289-290.

14. Kuznetsov P.K., Martemyanov B.V, Raschupkin A.V. Tekhnicheskoe zrenie podvizhnykh ob"ektov. Metodika sovmeshcheniya izobrazhenii, poluchennykh pri nablyudenii s podvizhnykh ob"ektov (Machine vision of mobile platforms. Technique of registration images obtained by airborne surveillance systems) // Vestnik komp'yuternykh i informatsionnykh tekhnologii. 2014, No. 3. pp. 3-10.

15. Kuznetsov P.K., Martemyanov B.V, Semavin V.I. Tekhnicheskoe zrenie podvizhnykh ob"ektov. Metod analiza polya skorostei dinamicheskogo izobrazheniya (Machine vision of mobile platforms. Method of the optical flow analysis of dynamic images) // Vestnik komp'yuternykh i informatsionnykh tekhnologii, 2014, No. 1, pp. 3-9.

16. Kuznetsov P.K., Martemyanov B.V. Matematicheskaya model' formirovaniya videodannykh, poluchaemykh s ispol'zovaniem skaniruyushchei s"emki (Mathematical model of video data acquisition with the application of scanning ccd mode) // Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2014, No. 6. pp. 292-299.

17. Vladimirov V.S. Uravneniya matematicheskoi fiziki. (Equations of mathematical physics) - izd. 4-e. – Moskow: Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury. 1981. – 512 p.

18. Somov E.I., Butyrin S.A., Kuznetsov P.K., Martemyanov B.V. Metodika utochne-niya uglovoi orientatsii avtonomnoi mobil'noi platformy na osnove kompleksirovaniya izmeritel'noi i nablyudatel'noi informatsii, ne soderzhashchei reperov // 5 rossiiskaya mul'tikonferentsiya po problemam upravleniya. Materialy konferentsii «Upravlenie v tekhnicheskikh, ergaticheskikh, organizatsionnykh i setevykh sistemakh». Saint-Petersburg: Kontsern «TsNII Elektropribor». 2012. pp. 810-813.


Clustering of hyperspectral satellite images of the Earth's surface based on the nearest neighbors density method
S.M. Larionov, A.A. Makarenkov, e-mail: foton@rsreu.ru
The Ryazan State Radio Engineering University named after V.F. Utkin (RSREU), Russia, Ryazan

Keywords: Earth remote sensing, hyperspectral images, image clustering, nearest neighbors method, nearest neighbors density.

Abstract
The paper describes modified approach of clustering of Earth remote sensing hyperspectral data based on nearest neighbors density method. The main drawback of the approach is the ambiguity in the choice of the number k of nearest neighbors, which directly affects the accuracy of clustering and the required computing costs. On the one hand, in order to achieve high performance of the algorithm, k should be as small as possible. When k is chosen equal small number relative total number of points, as a result of clustering, the physical classes actually present in the image are divided into a large number of small clusters, which in turn complicates the identification of objects. To improve the accuracy of clustering, it is necessary to increase the value of k. However, this increases the processing time (or the required RAM), moreover, the clusters become larger and already include several physical classes of objects.

The article proposes a modification consisting of the following steps.
1. Clustering the original image with small k.
2. Finding "average spectra" for each primary cluster.
3. Determination of the optimal k in the sense of the chosen measure of separability for combining "average spectra" The separability measure takes into account the intra-cluster and inter-cluster distance and the number of clusters and ensures the compactness and separability of the resulting clusters in the selected feature space.
4. Clustering "average spectra" with the optimal value of the nearest neighbors.
5. Obtaining the final image clusters - re-labeling of small primary clusters in accordance with the results of clustering their "average spectra".
The results of experimental studies are presented.

References
1. Zagorodnaia, A.A. Opyt primeneniia materialov DZZ v rabotah ekologicheskoi tematiki / N.B. Pystina, A.A. Zagorodnaia // Zaschita okruzhaiushhei sredy v neftegazovom komplekse. – 2005. – ¹ 9. – pp. 42–48.

2. Sai, S.V. Algoritmy morfologicheskoi klasterizacii rastitelnosti na baze kosmicheskih snimkov primenitelno k territorii g. Habarovska / S.V. Sai, G.Ya. Markelov, S.V. Plesovskih // Vestnik Tihookeanskogo gosuradstvennogo universiteta. – 2017 – ¹ 3 (46). – pp. 13–22.

3. Klein, N.A. Analiz podtoplennyh selskohozyaistvennyh territoryi v Zapadnoi Sibiri s ispolzovaniem DZZ / N.A. Klein, L.V. Berezin, M.S. Balukov // Innovacii v prirodoobustroistve i zaschite v chrezvychainyh situaciyah : Materialy IV mezhdunarodnoi nauchno-prakticheskoi konferencii. – 2018. – pp. 88–91.

4. Kenig, A.V. Primenenie tehnologii GIS i metodov DZZ v sisteme vyiavleniya, monitoringa i ohrany obektov arheologicheskogo nasledyia / A.V. Kenig, E.A. Zaiceva // INTEREKSPO GEO-Sibir. – 2013. – Vol. 8. – pp. 48–51.

5. Ufimcev, A.E. Izuchenie struktury prirodnyh i antropogennyh landshaftov s primeneniem GIS i dannyh DZZ / A.E. Ufimcev, O.Yu. Vaver // Basseinovye territorii: problemy i puti ih reshenyia : Materialy mezhdunarodnoi nauchno-prakticheskoi konferencii. redaktor-sostavitel G.S. Koscheeva. 2013. – 2016. – pp. 56–60.

6. Abrosimov, A.V. Perspektivy primeneniya dannyh DZZ iz kosmosa dlya povysheniya effektivnosti selskogo hozyaistva v Rossii / A.V. Abrosimov, B.A. Dvorkin // Geomatika. – 2009. – ¹ 4. – pp. 46–49.

7. Tretyakov, V.A., Osnovnye tendencii razvityia giperspektralnoi apparatury v mire / V.A. Tretyakov // Kosmonavtika i Raketostroenie. – 2013. – ¹ 4 (73). – pp. 36–40.

8. Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art. / P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, A. Plaza // IEEE Geoscience and Remote Sensing Magazine. – 2017, December. – Vol. 5, Iss. 4 – pp. 37–78. – doi:10.1109/mgrs.2017.2762087.

9. Hyperspectral Remote Sensing Classifications: A Perspective Survey / D. Chutia, D.K. Bhattacharyya, K.K. Sarma, R. Kalita, S. Sudhakar // Transactions in GIS .– 2016, August. – Vol. 20, Iss. 4. – pp. 463-490.

10. Zhang S.L. A Study of Image Classification of Remote Sensing Based on Back-Propagation Neural Network with Extended Delta Bar Delta / S.L. Zhang, Ò.Ñ. Chang // Mathematical Problems in Engineering. – 2015, October. – DOI: 10.1155/2015/178598.

11. Convolutional Neural Networks Based Hyperspectral Image Classification Method with Adaptive Kernels / C. Ding, Y. Li, Y. Xia, W. Wei, L. Zhang, Y. Zhang // – 2017, June. – Vol. 9, Iss. 6.

12. Towards a completely blind classifier for hyperspectral images / P. Halle ; S. Le Moan, C. Cariou // International Conference on Image and Vision Computing New Zealand (IVCNZ) . – 2017.

13. Cherezov, D.S. Obzor osnovnyh metodov klassifikacii i klasterizacii dannyh/ D.S.Cherezov, N.A. Tyukachev // Vestnik VGU, seryia: sistemnyi analiz i informacionnye tehnologii. – 2009. – ¹ 2. – pp. 25–29.

14. Arthur, D. How slow is the k-means method? / D. Arthur, S. Vassilvitskii // Proceedings of the 2006 Symposium on Computational Geometry. – 2006. – pp. 144–153.

15. Fuzzy c-means algorithm for segmentation of aerial photography data obtained using unmanned aerial vehicle / M.V. Akinin, N.V. Akinina, A.Y. Klochkov, M.B. Nikiforov, A.V. Sokolova // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2015. – Vol. XL-5/W6. – pp. 113–115.

16. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN / E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu // ACM transactions on database systems. – 2017. – ¹ 3 – Vol. 42 – pp. 1–21.

17. OPTICS: ordering points to identify the clustering structure /M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander//Proc. 1999 ACM SIGMOD Intern. Conf. on Management of data. –1999. – pp. 49–60.

18. Cariou, C. A new k-nearest neighbor density-based clustering method and its application to hyperspectral images / C. Cariou, K. Chehdi // International Geoscience and Remote Sensing Symposium (IGARSS). –2016. – pp. 6161-6164.

19. Cariou, C. Nearest neighbor-density-based clustering methods for large hyperspectral images / C. Cariou, K. Chehdi // Proc. SPIE 10427, Image and Signal Processing for Remote Sensing XXIII. – 2017, October . – doi: 10.1117/12.2278221.

20. Cariou, C. Application of unsupervised nearest-neighbor density-based approaches to sequential dimensionality reduction and clustering of hyperspectral images / C. Cariou, K. Chehdi // Proc. SPIE 10789, Image and Signal Processing for Remote Sensing. – 2018, October.

21. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes


Multiserver processing software management for large-scale remote sensing imagery

A.E. Kuznetsov, A.S. Ryzhikov, e-mail: foton@rsreu.ru
The Ryazan State Radio Engineering University named after V.F. Utkin (RSREU), Russia, Ryazan


Keywords: distributed processing, remote sensing, Hadoop, MapReduce.

Abstract
In recent years, the requirements for the efficiency of the remote sensing products formation have become more stringent. In this regard, the topical problem is the effective software organization of multi-server parallel processing of large-volume images from space observation systems of the Earth. The Hadoop technology is shown in the article to be inappropriate for solving the problem. A solution which provides an efficient organization of multi-server parallel processing of remote sensing data has been proposed.

There is no input-output with disk storage drives in the proposed software solution. Unlike Hadoop MapReduce, the initial fragments of the route are placed in the FS based on RAM, after which they are transferred to the processing server and loaded into the RAM.

Intermediate images created during processing are stored only in the RAM of the server processing this fragment and are not transmitted over the network to other machines. Experimental results have shown that due to this, the overhead for inter-server communication is less than 7% of the total program runtime. At the same time, the volume of the code base of the processing manager is several orders of magnitude smaller than the volume of the Hadoop source code, and as a result, it is easier to support and maintain.

References
1. Akhmetov R.N., Zinina I. I., Yudakov A.A., Eremeev V.V., Kuznetsov A.E., Poshekhonov V.I., Presnyakov O.A., Svetelkin P.N. Tochnostnye harakteristiki vyhodnoj produkcii vysokogo razresheniya KA «Resurs-P»// Precision characteristics of high resolution output products from Resurs-P spacecraft. –2020. –No 3. –pp. 41-47.

2. Almeer M.H. Cloud Hadoop Map Reduce For Remote Sensing Image Analysis// J. of Emerging Trends in Computing and Information Sciences. – 2012. – V. 3, No 4. –pp. 637 – 644.

3. Wiley K., Connolly A., Krughoff S., Gardner J., Balazinska M., Howe B., Kwon Y., Bu Y. Astronomical Image Processing with Hadoop// Astronomical Data Analysis Software and Systems XX. ASP Conference Proceedings. – 2010. – V. 442. –pp. 93–98.


Broadband data transmission methods based on signals with frequency-division multiplexing
Nikishkin P.B., Vityazev V.V.
The Ryazan State Radio Engineering University named after V.F. Utkin (RSREU), Russia, Ryazan

Keywords:
broadband data transmission systems, OFDM, filter bank.

Abstract
Methods of broadband data transmission with frequency division multiplexing are considered. A method for adaptive broadband data transmission based on filter bank and OFDM technologies is presented. The possibility of increasing the spectral and computational efficiency of the data transmission system is shown. The results of studying the Doppler shifts using OFDM technology are generalized.

References
1. Vityazev V.V. Tsifrovaya obrabotka signalov: retrospektiva i sovremennoe sostoyanie // Elektrosvyaz'. – 1997. - ¹ 6.

2. Shoyermann X., Gekler X. Sistematizirovannyy obzor tsifrovykh metodov preobrazovaniya vida uplotneniya kanalov // TIIER. 1981. T. 69. ¹ 11. S. 52—84.

3. Behrouz Farhang-Boroujeny. OFDM Versus Filter Bank Multicarrier // IEEE Signal Processing Magazine, -2011, -Vol. 28, ¹ 3, -P. 92-112.

4. Vityazev V.V., Nikishkin P.B. Banki fil'trov i OFDM v sistemakh shirokopolosnoy peredachi dannykh so mnogimi nesushchimi. // Nauchno-tekhnicheskiy zhurnal “TsOS”. -2015. - ¹4. -s.30-34.

5. Vityazev V.V., Nikishkin P.B. Metod analiza/sinteza signalov v sistemakh peredachi dannykh s chastotnym uplotneniem kanalov. // Elektrosvyaz'. - 2014. - ¹ 12. - s. 4-9.

6. Vityazev V.V., Nikishkin P.B.Issledovanie effektov Doplera na OFDM i SUB-OFDM signaly // 1-ya Vserossiyskaya konferentsiya «Sovremennye tekhnologii obrabotki signalov», Moskva, Rossiya, doklady konferentsii.

7. Vityazev V.V., Nikishkin P.B. Sravnenie effektivnosti tekhnologiy OFDM i SUB-OFSM pri razlichnykh meshayushchikh vozdeystviyakh v kanale svyazi. // 21-ya Mezhdunarodnaya konferentsiya “Tsifrovaya obrabotka signalov i ee primenenie - DSPA-2019”, Moskva, Rossiya, doklady. - 2019. - Kniga 1. -s. 6-10.

8. Maykov D. Yu., Vershinin A. S. Vliyanie effektov Doplera na OFDM signal // Molodoy uchenyy. — 2014. — ¹21. — S. 175-179. — URL https://moluch.ru/archive/80/14271/.

9. M.G. Bakulin, V.B. Kreyndelin, A.M. Shloma, A.P. Shumov - Tekhnologiya OFDM: Uchebnoe posobie dlya vuzov / M. : Goryachaya liniya - Telekom, 2017. - 352 s. - ISBN 978-5-9912-0549-8

10. V.V. Vityazev, A.A. Ovinnikov Metody analiza/sinteza signalov v sistemakh besprovodnoy svyazi so mnogimi nesushchimi //ELEKTROSVYaZ'. - 2013. - ¹ 9. - s. 28-32.

11. Jialing Li and Erdem Bala and Rui Yang - Resource block Filtered-OFDM for future spectrally agile and power efficient systems. Physical Communication, 2014/11, pp. 36-55, doi: 10.1016/j.phycom.2013.10.003

12. Van Eeckhaute, M., Bourdoux, A., De Doncker, P. et al. Performance of emerging multi-carrier waveforms for 5G asynchronous communications. J Wireless Com Network 2017, 29 (2017) doi:10.1186/s13638-017-0812-8

The role of zero padding in the theory of two-dimensional fourier signal processing
Ponomarev A.V., e-mail: palexizh@gmail.com
Ponomareva O.V., e-mail: ponva@mail.ru

Kalashnikov Izhevsk State Technical University (IzhSTU), Izhevsk, Russia

Keywords: two-dimensional signal, reference domain, two-dimensional discrete Fourier transform, two-dimensional discrete-spatial Fourier transform, two-dimensional convolution, two-dimensional correlation function, zero padding.

Abstract
The transition to two-dimensional Fourier processing requires rethinking many concepts and definitions of one-dimensional digital Fourier processing of signals. For example, the operation of appending zeros to the original signal in one-dimensional Fourier signal processing is an effective method for eliminating aliasing effects, detailing the spectrum estimate of finite discrete one-dimensional signal. In two-dimensional Fourier signal processing, the corresponding operation is also effective, but requires rethinking. The paper presents the systems analysis of theoretical foundations of discrete two-dimensional signal processing based on Fourier transform. Evaluation of the efficiency of the zero-padding operation in two-dimensional signal processing is carried out.

The concept of discrete - spatial Fourier transform is introduced. It is shown that discrete-spatial Fourier transform is defined as two-dimensional z-transform. This transformation is computed in z-space on the unit sphere.

Approximation of the discrete - spatial Fourier transform is considered. The approximation of the discrete-spatial Fourier transform is based on two-dimensional discrete Fourier transform of a zero-padded signal.

A systems analysis of the postulates of the theory of discrete two-dimensional signal processing based on Fourier transform is given.

Methods and algorithms for obtaining a two-dimensional linear convolution using cyclic convolution are presented. Methods and algorithms for obtaining a two-dimensional linear correlation function based on a cyclic correlation function are presented. The results of numerical simulation are presented, which confirm the obtained theoretical results.

References
1. Ponomareva O.V. Osnovy teorii diskretnyh kosvennyh izmerenij parametrov signalov [Fundamentals of the theory of discrete indirect measurement parameters of signals]. Izhevsk: Publishing IzhGTU, 2016, 172 p.(n Russ.)

2. Rabiner L., Gould B. Teoriya i primenenie cifrovoj obrabotki signalov. Perevod s angl. [Theory and application of digital signal processing]. Moscow, World., 1978, 839 p.(in Russ.)

3. Dudgeon D.E. Multidimensional Digital Signal Processing Prentice Hall, 1995. — 406 p.

4. Gonzalez R.C., Woods R.E. Digital Image Processing, 4th Ed. Published by Pearson. 2018.–1168 pages.

5. Prehtt U. Cifrovaya obrabotka izobrazhenij. V 2-h knigah. Perevod s angl. [Digital image processing]. Moscow, World., 1982, 790 p.(in Russ.)

6. Ponomarev V.A., Ponomareva O.V., Ponomarev A.V. [Measurement of time spectra of discrete signals at finite intervals]’ Vestnik IzhGTU imeni M.T.Kalashnikova, 2016, vol/19, nj 2, pp.80-83 (in Russ.).

7. Ponomareva O.V. Razvitie teorii i razrabotka metodov i algoritmov cifrovoj obrabotki informacionnyh signalov v parametricheskih bazisah Fur'e [Development of the theory and development of methods and algorithms for digital processing of information signals in parametric Fourier bases]: Dissertation of the doctor of technical sciences]: Izhevsk, 2016, 357 p. (in Russ.).

8. Ponomareva O.V., Ponomarev A.V. [Spatial interpolation of two-dimensional discrete signals using fast Fourier transforms]. Intelligent systems in production. 2019, vol. 17, no.1, pp.88-94 (in Russ.).

9. Ponomarev V.A., Ponomareva O.V. [Trends in the development of discrete indirect measurements of the parameters of electrical signals]. Metrology, 2017, no.1, pp.20-32 (in Russ.).

10. Ponomareva O.V. [Noninvariance of the sliding energy parametric Fourier spectrum of real tonal signals] Cifrovaya obrabotka signalov, 2014, no. 2, pp.7-14 (in Russ.).

11. Ponomareva O.V., Ponomarev A.V. [Fast Horizontal Sliding Frequency Span Processing Method]. Intelligent systems in production. 2019, vol. 17, no.2, pp.81-87 (in Russ.).

12. Ponomareva O.V. [Measurement of the spectra of complex signals at finite intervals by the method of aperiodic discrete Fourier transform]. Intellectual systems in production, 2014, no. (23) pp..100-107.2014 (in Russ.).

13. Ponomarev V.A, Ponomareva O.V., Ponomareva N.V. [The method of fast calculation of the discrete Hilbert transform in the frequency domain]. Modern information and electronic technologies, 2014, no.15, pp. 183-184 (in Russ.).

14. Ponomareva O.V., Ponomarev A.V., Ponomareva N.V. [Hierarchical morphological and informational description of the systems of functional diagnostics of objects]. Modern information and electronic technologies, 2013, no.14, pp..121-124 (in Russ.).

15. Ponomareva O.V., Ponomarev A.V., Ponomareva N.V. Formalized description of the measurement error of the probabilistic characteristics of random processes with processor measurement tools] Modern information and electronic technologies, 2013, no.14, pp. 90-93 (in Russ.).

16. Ponomareva O.V. [Probability Theoretical Characteristics of Random Discrete Mformation Signals and the Axioms of Their Measurement]. Intelligent systems in production. 2019, vol. 17, no.2, pp.73-80 (in Russ.).

17. Ponomareva N.V. [Problems of computer spectral signal processing in musical acoustics] Intellectual systems in production, 2018, vol. 16, no.1, pp. 26-33 (in Russ.).

18. Ponomareva N.V., Ponomareva O.V., Hvorenkov V.V. [Determination of anharmonic discrete signal envelope based on the Hilbert transform in the frequency domain]. Intelligent systems in production, 2018, vol.16, no.1, pp.33-40 (in Russ.).

19. Ponomareva N.V, Ponomareva V.YU. [Localization of spectral peaks by the parametric discrete Fourier transform method]. Intellectual systems in production, 2016, no. 2 (29), pp.15-18 (in Russ.).

20. Ponomareva N.V. [Pre-processing of discrete signals in spectral analysis in the computer mathematics system MATLAB]. Intellectual systems in production, 2016, no. 4 (31). pp. 32-34 (in Russ.).

21. Ponomareva O.V., Ponomareva N.V, Ponomareva V.YU. [The use of time windows in the vector spectral analysis of discrete signals]. Intelligent systems in production. 2016, no.4 (31), pp.19-21 (in Russ.).

22. Ponomarev V.A., Ponomareva O.V., Ponomareva N.V. [Discrete time inversion and parametric discrete Fourier transform]. Intellectual systems in production, 2016, no. 4 (31). pp.25-31 (in Russ.).

23. Ponomarev V.A., Ponomareva O.V. [Generalization of the discrete Fourier transform for interpolation in the time domain]. Izvestiya vuzov. Radioehlektronika, 1983, vol. XXVI, no. 9, pp. 67 - 68 (in Russ.).

24. Ponomareva O.V. [Invariance of the Fourier sliding energy spectrum of discrete signals in the basic system of parametric exponential functions]. Vestnik IzhGTU imeni M.T.Kalashnikova, 2015, no. 2 (62), pp..102-106 (in Russ.).

25. Ponomareva O.V., Alekseev V.A., Ponomarev A.V. [Fast algorithm for measuring the spectrum of real signals by the aperiodic discrete Fourier transform method]. Vestnik IzhGTU imeni M.T.Kalashnikova, 2015, no. 2 (62), pp..106-109 (in Russ.).

26. Ponomarev V.A., Ponomareva O.V. [Invariance of the current energy Fourier spectrum of complex discrete signals at finite intervals ]. News of higher educational institutions of Russia. Radio electronics, 2014, no.2, pp.8-16 (in Russ.).

27. Ponomareva O.V., Ponomarev V.A. [Measurement of the current energy Fourier spectrum of complex and real discrete signals at finite intervals]. Intellectual systems in production, 2013, no.2 (22), pp. 149-157 (in Russ.).

28. Ponomarev V.A., Ponomareva O.V., Ponomarev A.V. [Generalized functional-structural model of information-measuring systems for functional diagnostics of objects]. Modern information and electronic technologies, 2013, vol. 1, no. 14. – pp. 115 - 118.

29. Ponomareva O.V., Ponomareva N.V. [Filter modification based on frequency sampling by generalizing the difference equation of a non-recursive comb filter]. Modern information and electronic technologies, 2013, vol. 1, no. 14. – pp. 244 - 247.

30. Ponomareva O.V. [Horizontal sliding spatial-frequency processing of two-dimensional discrete real signals]. Intelligent systems in production. 2019, vol. 17, no.1, pp.78-87 (in Russ.).

31. Ponomarev A. V. [Two-dimensional signal processing in discrete Fourier bases]. Intelligent systems in production. 2019, vol. 17, no.1, pp.71-77 (in Russ.).



If you have any question please write: info@dspa.ru