Digital Signal Processing |
Russian |
EFFICIENCY OF ACOUSTIC ECHO CANCELLATION BY MEANS OF ADAPTIVE FILTER BASED ON MULTICHANNEL FAST AFFINE PROJECTION ALGORITHM Abstract 2. Woods R., McAllister J., Lightbody G., Ying Yi. FPGA-based implementation of signal processing systems, 2-nd ed. – Willey, 2017. – 360 p. 3. Oppenheim A.V., R.W. Schafer. Discrete-time signals procesing. – Prentice-Hall, 2009. – 1144 p. 4. Sayed A. H. Fundamentals of adaptive filtering. John Willey and Sons, 2003.1125 p. 5. Farhang-Boroujeny B. Adaptive filters theory and applications. 2-nd ed. – John Wiley & Sons, 2013. – 778 p. 6. Djigan V.I. Adaptivnaya fil'traciya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms). M: Tekhnosfera, 2013. 528 s. (In Russian). 7. Haykin S. Adaptive filter theory. 5-th ed. – Pearson Education Inc., 2014. – 889 p. 8. Diniz P. S. R. Adaptive filtering algorithms and practical implementation, 5-th ed. – Springer, 2020. – 495 p. 9. Benesty J., Huang Y., Eds. Adaptive signal processing: applications to real-world problems. –Sprringer-Verlag, 2003. – 356 p. 10. Benesty J., Chen J., Huang Y. Microphone array signal processing. – Springer, 2008. – 250 p. 11. Monzingo R. A., Haupt R. L., Miller T. W. Introduction to adaptive arrays, 2nd ed. – SciTech Publishing, 2011. – 510 p. 12. Djigan V. I. Adaptivnoe vyravnivanie amplitudno-chastotnyh harakteristik kanalov rasprostraneniya akusticheskih voln v zakrytyh pomeshcheniyah (Adaptive equalization of frequency response of acoustic wave propagation channels in closed rooms) // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES) (Problems of Perspective Micro- and Nanoelectronic Systems Development). – 2021. Vypusk 2. – S. 61–68. 13. Djigan V. I. Ekvalajzery s drobnoj zaderzhkoj i obratnoj svyaz'yu na baze bystryh RLS-algoritmov (Fractionally spaced feed-backward equalizers, based on fast RLS adaptive filtering algorithms) // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES) (Problems of Perspective Micro- and Nanoelectronic Systems Development). – 2020. – Vypusk 2. – S. 126–131. 14. Djigan V. I. Prediskaziteli signalov s pryamym obucheniem dlya usilitelej moshchnosti (Direct learning digital predistorters for power amplifiers) // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES) (Problems of Perspective Micro- and Nanoelectronic Systems Development). – 2020. – Vypusk 3. – S. 151–157. 15. Elliot S. J., Nelson P. A. Active noise control // IEEE Signal Processing Magazine. – 1993. – Vol. 10. – ¹ 4. – P. 12–35. 16. Makino S. Acoustic echo cancellation // IEEE Signal Processing Magazine. – 1997. – Vol. 14. ¹ 5. – P. 39–41. 17. Gay S. L., Benesty J., Eds. Acoustic signal processing for telecommunications. – Springer, 2000. – 333 p. 18. Albu I., Anghel C., Paleologu C. Adaptive filtering in acoustic echo cancellation systems – a practical overview //Proceedings of the 9-th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). – Targoviste, Romania, June 29 – July 1, 2017. – 6 p. 19. Dzhigan V. I. Mnogokanal'nye RLS- i bystrye RLS-algoritmy adaptivnoj fil'tracii (Multichannel RLS and fast RLS adaptive filtering algorithms ) // Uspekhi sovremennoj radioelektroniki (Successes of Modern Radioelectronics). – 2004. – ¹ 11. S. 48–77. (In Russian) 20. Djigan V. I. Recursive least squares – an idea whose time has come // Proceedings of the 7-th International Workshop on Spectral Methods and Multirate Signal Processing. Moscow, Russia, September 1 – 2, 2007. – 4 p. 21. Cioffi J. M., Kailath T. Fast, recursive-least-squares transversal filters for adaptive filtering // IEEE Trans. Acoustics, Speech, and Signal Processing. – 1984. – Vol. 32. – ¹ 2. – P. 304–337. 22. Slock D. T. M., Kailath T. Numerically stable fast transversal filters for recursive least squares adaptive filtering // IEEE Trans. Signal Processing. – 1991. – Vol. 39. – ¹ 1. – P. 92–114. 23. Shynk J. J. Frequency-domain and multirate adaptive filtering // IEEE Signal Processing Magazine. – 1992. – Vol. 9. – ¹ 1. – P. 14–37. 24. Soo J.-S., Pang K. K. Multidelay block frequency domain adaptive filter // IEEE Trans. Acoustics, Speech, and Signal Processing. – 1990. – Vol. 38. – ¹ 2. – P. 373–376. 25. Ozeki K., Umeda K. An adaptive filtering algorithm using orthogonal projection to an affine subspace and its properties // Trans. IECE Japan. – 1984. – Vol. J67-A. – ¹ 2. – P. 126–132. 26. Gay S. L. A fast converging, low complexity adaptive filtering algorithm //Proceedings of the 3-rd International Workshop on Acoustic Echo Control. – New Paltz, NY, USA, 17 –20 October. – P. 223–226. 27. Tanaka M., Kaneda Y., Makino S., Kojima J. Fast projection algorithm and its step size control // Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. – Detroit, MI, USA, 9 – 12 May. – 19995. – Vol. 2. – P. 945–948. 28. Gay S. L., Tavathia S. Fast affine projection algorithm // Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. – Detroit, MI, USA, May 9 – 12. – 1995. – Vol. 5. – P. 3023–3026. 29. Tanaka M., Kaneda Y., Makino S., Kojima J. A fast projection algorithm for adaptive filtering // IEICE Transactions. Fundamentals. – 1995. – Vol. E78A. – ¹ 10. – P. 1355–1361. 30. Djigan V. I. Improved fast affine projection algorithm with gradient adaptive step-size // Proceedings of the 3-rd International Conference on Antennas, Radiocommunication Systems & Means (ICARSM-97). – Votonezh, Russia, 26 – 29 May, 1997. – Vol. 3. – P. 23–32. 31. Djigan V. I. Multichannel fast affine projection algorithm with gradient adaptive step-size and fast computation of adaptive filter output signal // Proceedings of the 12-th IEEE East-West Design & Test Symposium (EWDTS-2014). – Kiev, Ukraine, September 26 – 29, 2014. – P. 87–92. 32. Djigan V. I. Application of affine projection algorithm in adaptive arrays // Proceedings of the IEEE 3-rd International Conference on Smart Technologies (UKRCON-2021). – Lviv, Ukraine, August 26 – 28, 2021. – P. 208–212. 33. Allen J. B., Berkley D. A. Image method for efficiently simulation small-room acoustics // Journal of Acoustical Society of America. – 1979. – Vol. 64. – ¹ 4. – P. 943–950. 34. Lehmann E. A., Johansson A. M. Prediction of energy decay in room impulse responses simulated with an image-source model // Journal of Acoustical Society of America. – 2008. Vol. 124. – ¹ 1. – P. 269–277. 35. Lehmann E. A., Johansson A. M. Diffuse reverberation model for efficient image-source simulation of room impulse responses // IEEE Trans. Audio, Speech, and Language Processing. – 2010. – Vol. 18. – ¹ 6. – P. 1429–1439. 36. Lehmann E. A. Fast simulation of acoustic room impulse responses // https://www.mathworks.com/matlabcentral/fileexchange/25965-fast-simulation-of-acoustic-room-impulse-responses-image-source-method?s_tid=srchtitle
Keywords: Formation of optimal multidimensional signals, demodulation of optimal multidimensional signals, energy efficiency, spectral efficiency, noise immunity of signal reception. It is noted that the SSAS generation procedure is similar to the convolutional code generation procedure, and the demodulation procedure is similar to the sequential decoding procedure of a convolutional code using the Viterbi algorithm. It is shown that the number of operations required to generate SSAS signals in modulators and processing operations of these signals in demodulators increases linearly with an increase in the duration of signals in SSAS. Therefore, the complexity of the technical implementation of communication systems with SSAS turns out to be comparable to the complexity of the implementation of communication systems which use two-dimensional signal ensembles such as QAM and APSK to increase the reliability of message reception. It is noted that the use of SSAS allows the creation of communication systems with high energy and spectral efficiency. Parametric spectral analysis of piece-stationary radioengineering signals taking into account the effect of noise on correlation properties
Abstract The aim of the work is to increase the computational efficiency of analysis algorithms and the accuracy of spectral estimation of radioengineering signals on the background of piecewise-stationary noises. Based on an estimate of the optimal value of the correction value based on an estimate of the noise power Pn, the proposed method makes it possible to reduce the influence of non-stationary noise and improve the accuracy of spectral estimates by correcting the autocorrelation coefficients of piecewise stationary random processes. The qualitative indicators of the proposed modified spectral analysis method are compared with the conventional parametric autoregressive method. Experimental studies have shown that when using the proposed approach for spectral estimation, when compared with known autoregressive methods, it is possible to reduce the discrepancy between the control and estimated spectra by 7.4...9 times. When conducting a comparative analysis with a conventional autoregressive model, the decrease in the order of p can reach 2.5...3 times while maintaining the same spectral estimation accuracy. It is confirmed that for the analysis of the spectrum of the studied narrowband radioengineering signals, the relative deviations ΔF of the estimate of dominant frequency are significantly (up to 6 times) reduced by using the proposed modified method in comparison with the autoregressive method. Winnings are achieved through the use of a priori information about the time-varying power of the interfering process. 2. Djuric PM. A MAP solution to off-line segmentation of signals. Proc of the international conference on acoustics, speech and signal processing. Adelaide, Australia, 1994. No. 4. pp. 505508. 3. Dobigeon N., Tourneret J-Y., Davy M. Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach. IEEE Trans Signal Process, 2007. No. 4. Vol. 55. pp. 12511263. 4. Lavielle M. Optimal segmentation of random processes. IEEE Trans Signal Process. 1998. No. 5. Vol. 46. pp. 13651373. 5. Baevskij R.M., Kirillov O.I., Kleckin S.M. Matematicheskij analiz izmerenij serdechnogo ritma pri stresse. M.: Nauka, 1984, 221 p. 6. Basseville M., Nikiforov IV. Detection of abrupt changes: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993. 7. Baevskij R.M., Nikulina G.A. Holterovskoe monitorirovanie v kosmicheskoj medicine: analiz variabel'nosti serdechnogo ritma // Vestnik aritmologii. 2000. ¹ 16. pp. 616. 8. Andreev V.G. Optimizaciya avtoregressionnyx modelej meshayushhix radiootrazhenij // Izv. vuzov. Radioelektronika. 2008, vol. 51, no. 7, pp. 4047. 9. Koshelev V.I., Andreev V.G. Modelirovanie radiotehnicheskih signalov s uchetom ih fazovyh portretov // Cifrovaja obrabotka signalov i ee primenenie — DSPA 2008: tez. dokl. 10 Mezhdunar. konferencii i vystavki. No H-1. M.: Institut problem upravlenija RAN, 2008. pp. 418420. 10. Andreev V.G. Metod postroeniya modelej signalov s zadannymi amplitudno-fazovymi portretami. // Vestnik Ryazanskogo gosudarstvennogo radio-texnicheskogo universiteta. No. 1, Vypusk 31, Ryazan: RGRTU, 2010, pp. 1215. 11. Kolmogorov A.N., Proxorov Yu.V., Shiryaev A.N. Veroyatnostno-statisticheskie metody obnaruzheniya spontanno voznikayushhix e'ffektov // Tr. MIAN. 1988, vol. 182, pp. 423. 12. Savchenko V.V. Obnaruzhenie i prognozirovanie razladki sluchajnogo processa na osnove spektralnogo ocenivaniya // Avtometriya. 1996, vol. 2, pp. 7784. 13. Vorobejchikov S.E., Kabanova T.V. Obnaruzhenie momenta razladki processa avtoregressii pervogo poryadka // Vestnik Tomskogo Gosudarstvennogo Universiteta. 2003, vol. 280, pp. 170174. 14. Borovkov A.A. Ocenki momenta razladki po bol'shim vyborkam pri neizvestnyh raspredelenijah // Teorija verojatnostej i ee primenenija. 2008. vol. 53. Vypusk 3. pp. 437457. 15. Korkas, Karolos K., Fryzlewicz, Piotr Multiple change-point detection for nonstationary time series using wild binary segmentation. Statistica Sinica, 2017. No 1. Vol. 27. pp. 287311. 16. Rajs Dzh. R. Matrichnye vychisleniya i matematicheskoe obespechenie (Matrix calculations and software): per. s angl. O. B. Arushanyana. Moscow: Mir. 1984, 264 p.
Abstract This work is carried out within the framework of the study of processes occurring at different stages of seismic activity in the Kamchatka region. The source of information for the performed observations is the acoustic field. In particular, one of the indicators of seismic activity is a change in the characteristics of geoacoustic emission, which is generated by near-surface sedimentary rocks. Changes in these signals are connected with earthquake preparation. However, the study of these changes is associated with certain difficulties in processing and analyzing geoacoustic emission signals. These signals are flows of pulses of various shapes, durations, with different interpulse intervals. At the same time, these characteristics change noticeably over short time intervals in a wide range of values. In order to better understand the behavior of pulses in group dynamics, the authors proposed a stochastic model of the geoacoustic emission signal. The signal is recorded by a point receiver in a homogeneous and isotropic medium. The model parameters are three random variables. These are pulse amplitude, interpulse interval, and pulse duration. To analyze the proposed model, a technique for constructing three-dimensional graphs of the distributions of each of the parameters was developed. It makes it possible to reveal the features of their behavior over time. Approbation of the technique was carried out on an artificial signal with different laws of parameters distribution. Applying the developed technique to real data, the authors revealed anomalies in the parameters distribution of geoacoustic pulses flow. As a result, new knowledge was obtained about the effect of seismic processes on the acoustic field in near-surface sedimentary rocks. This work is carried out within the framework of the State task on the topic (2021-2023) «Physical processes in the system of near space and geospheres under solar and litospheric impact», registration number AAAA-A21-121011290003-0. References 2. Kaistrenko V. Tsunami Recurrence and Hazard Evaluation for the South Kuril Islands // Pure and Applied Geophysics, 2022, 20 p. 3. Leon T., Lau A.Y.A., Easton G. et al. A comprehensive review of tsunami and palaeotsunami research in Chile // Earth-Science Reviews, 2022, vol. 236, no. 3, art. no. 104273. 4. Sivakumar R., Ghosh S. Assessment of the influence of physical and seismotectonic parameters on landslide occurrence: an integrated geoinformatic approach // Natural Hazards, 2021, vol. 108, no. 3, pp. 2765–2811. 5. Chamoli B., Kumar A., Chen D. et al. A Prototype Earthquake Early Warning System for Northern India // Journal of Earthquake Engineering, 2021, no. 25, pp. 2455–2473. 6. Tripodi V., Gervasi A., La Rocca M. et al. Seismotectonics of Southern Calabria Terrane (South Italy) // Journal of Mountain Science, 2022, no. 19, pp. 3148–3162. 7. Magomedov R.A., Musaev M.A. Otsenka seysmotektonicheskogo potentsiala blokov Vostochnogo Kavkaza (Assessment of the seismotectonic potential of the east caucasus blocks) // Geologiya i geofizika Yuga Rossii (Geology and geophysics of the south of Russia), 2021, vol. 11, no. 4, pp. 43–57. 8. Vladimirova I.S., Lobkovsky L.I., Alekseev D.A., Gabsatarov Y.V. Osobennosti seysmicheskogo protsessa v zapadnoy chasti Aleutskoy subduktsionnoy zony i ikh vozmozhnaya svyaz' s klimaticheskimi izmeneniyami v Arktike (Features of the seismic process in the western part of the Aleutian subduction zone and their possible relationship with climate changes in the Arctic) // Arktika: ekologiya i ekonomika (Arctic: ecology and economy), 2022, vol. 12, no. 1, pp. 58–67. 9. Marapulets Y., Rulenko O. Joint Anomalies of High-Frequency Geoacoustic Emission and Atmospheric Electric Field by the Ground–Atmosphere Boundary in a Seismically Active Region (Kamchatka) // Atmosphere, 2019, no. 10, art. no. 267. 16 p. 10. Gapeev M.I., Marapulets Yu.V. Modelirovanie zon otnositel'nykh sdvigovykh deformatsiy pered sil'nymi zemletryaseniyami na Kamchatke, proizoshedshimi v period 2018–2021 gg. (Modeling of relative shear deformation zones before strong earthquakes in Kamchatka from 2018–2021) // Vestnik KRAUNTs. Fiziko-matematicheskie nauki (Bulletin KRASEC. Physical and Mathematical Sciences), 2021, vol. 37, no. 4, pp. 53–66 11. Kuptsov A.V., Larionov I.A., Shevtsov Â.Ì. Osobennosti geoakusticheskoy emissii pri podgotovke kamchatskikh zemletryaseniy (Geoacoustic emission during the precursory periods of Kamchatka earthquakes) // Vulkanologiya i seysmologiya (Journal of Volcanology and Seismology), 2005, no. 5, pp. 45–59. 12. Gordienko V.A., Gordienko T.V., Krasnopistsev N.V. et al. Anomaliya vysokochastotnykh signalov geoakusticheskoy emissii kak operativnyy predvestnik zemletryaseniya // Akusticheskiy zhurnal (Acoustical Physics), 2008, vol. 54, no. 1, pp. 97–109. 13. Aleksandrov D.V., Dubrov M.N., Larionov I.A., Marapulets Y.V., Shevtsov B.M. Earth strain and acoustic monitoring of geodynamic processes in seismic and aseismic zones using highly sensitive, spatially separated instruments // Journal of volcanology and seismology, 2019, no. 3, pp. 72–80. 14. Malkin E.I., Lukovenkova O.O., Solodchuk A.A. i dr. Predseysmicheskie effekty v signalakh geoakusticheskoy i elektromagnitnoy emissii po dannym nablyudeniy na Kamchatke v 2013 godu // Teoriya i praktika sovremennykh gumanitarnykh i estestvennykh nauk. Vypusk 10: sbornik nauchnykh statey ezhegodnoy mezhregional'noy nauchno-prakticheskoy konferentsii, Petropavlovsk-Kamchatskiy, 10–14 fevralya 2020 g. / otv. red. M. A. Frizen, R. I. Parovik; KamGU im. Vitusa Beringa, 2020, pp. 130–133. 15. LukovenkovaO., MarapuletsY., SolodchukA. Adaptive Approachto Time-Frequency Analysis of AE Signals of Rocks // Sensors, 2022, vol. 24, art. no. 9798. 16. Nesterov S.V., Akulenko L.D., Gavrikov A.A. Determination of dynamic density of a granulated medium impregnated with a liquid // Doklady physics, 2011, vol. 436, no. 6, pp. 760–763. 17. Mountain Encyclopedia. Acoustic properties of rocks. www.miningenc.ru/a/akusticheskie-svojstva. 18.web-site www.astronet.ru/db/msg/1173309/ 19. Berezin Yu.A., Spodareva L.A. Propagation of acoustic signals in soils // Journal of applied mechanics and technical physics, 2001, vol. 42, no. 4, pp. 177–183. 20. Kan Sh.Ch, Mikulovich A.V., Mikulovich V.I. Analiz nestatsionarnykh signalov na osnove preobrazovaniya Gil'berta-Khuanga // Informatika, 2010,no. 2, pp. 25–35. 21. SvetlakovM., KovalevI., KonevA. etal. RepresentationLearningforEEG-BasedBiometricsUsingHilbert–HuangTransform // Computers, 2022, vol. 11, no. 3, art. no. 47. 22. Mandrikova O., Mandrikova B. Method of wavelet-decomposition to research cosmic ray variations: Application in space weather // Symmetry, 2021, vol. 13, no. 12, art. no. 2313. 23. Senkevich Yu.I., Marapulets Yu.V., Lukovenkova O.O., Solodchuk A.A. Metodika vydeleniya informativnykh priznakov v signalakh geoakusticheskoy emissii (Technique of informative features selection in geoacoustic emission signals) // Trudy SPIIRAN (SPIIRAS Proceedings), 2019, vol. 18, no. 5, pp. 1066–1092.
Abstract References 2. Kalaev M.P., Telegin A.M., Voronov K.E. etc. Investigation of optical glass characteristics under the influence of space factors // Computer Optics 2019. Vol. 43. Issue 5. P. 803-809. 3. Jose M. Sanchez-Pena, Marcos Ñ., Maria Y. Fernandez, Zaera R. Cost-effective optoelectronic system to measure the projectile velocity in high-velocity impact testing of aircraft and spacecraft structural elements/ // Optical Engineering.2007. Vol. 46. Issue 5. Art.¹ 051014. 4. Glasse B., Zerwas A., Guardani R. and Fritsching U. Refractive indices of metal working fluid emulsion components/ //Meas. Sci. Technol. 2014. Vol. 25. Art.¹035205. 5. Boren K., Huffman D. Absorption and scattering of light by small particles: Per. from English - M.: Mir, 1986.-664s. 6. G. Van de Hulst. Scattering of light by small particles // Foreign Literature Publishing House, 1961 7. Sapronov M.V., Skornyakova N.M. Simulation of the scattering indicatrices of laser radiation by small spherical absorbing particles // Material of the conference: "Proceedings of the International Conference on Computer Graphics and Vision "Grafikon"". 2019. S. 99-103. 8. Deirmendzhan D. Scattering of electromagnetic radiation by spherical polydisperse particles / Translated from English: Ed. K.N. Kondratiev. M.: Mir. 1971. 165 p. 9. Weiner, M. Rust and Donnelly T.D. Particle size determination: An undergraduate lab in Mie scattering// Am. J. Phys. 2001.Vol. 69. Issue 129. 10. Peltoniemi J., Zubko N., Virkki A., Gritsevich M., Moilanen J., Roulet J., Nguyen D., Mitev V., Putzar R., Watson E., Schimmerohn M., Penttila A., Muinonen K., Millinger M. Light scattering model for small space debris particles //Advances in Space Research. 2022. Vol. 70. P. 2961–2975. Optimization of rejection filters when wobbling the repetition period Abstract The application of the minimax principle to the magnitude of relative losses in marginal efficiency leads to the determination of a weight vector in each period of repetition, in which minimal losses are provided over the entire optimization range compared to optimal processing. The numerical results of optimization are given, from which it follows that the vector of weight coefficients in each period is asymmetric and varies from period to period. For different values of the noise/clutter ratio, the gains in marginal efficiency provided by a filter with optimized weighting coefficients compared to known non-optimized coefficients are determined. The principles of implementing an optimized filter based on a system function in the form of cascading inclusion of 1st and 2nd order links with time-variable weighting coefficients are considered, and a block diagram of the filter with partial adaptation to the Doppler phase of passive clutter and switching from period to period of weighting coefficients is presented. According to the criterion determining the effectiveness of interference suppression, a comparative analysis of the effectiveness of optimized filters was carried out and the volume of the training sample was estimated in case of their adaptation to the Doppler phase of clutter. References 2. Richards M.A., Scheer J.A., Holm W.A. (Eds.). Principles of Modern Radar: Basic Principles. New York: SciTech Publishing, IET, Edison. 2010. – 924 p. 3. Melvin W. L., Scheer J.A. (Eds.). Principles of Modern Radar: Advanced Techniques. New York: SciTech Publishing, IET, Edison, 2013. – 846 p. 4. Radar Handbook / Ed. by M.I. Skolnik. 3rd ed. McGraw–Hill, 2008. 1352 p. 5. Popov D.I. Adaptacija nerekursivnyh rezhektornyh fil'trov // Izvestija vuzov. Ra-diojelektronika. 2009. vol. 52. no. 4. P. 46-55. (in Russian). 6. Popov D.I. Autocompensation of the Doppler phase of clutter // Cifrovaja obrabotka signalov. 2009. no 2. pp. 30–33. (in Russian). 7. Popov D.I. Avtokompensacija doplerovskoj fazy mnogochastotnyh passivnyh pomeh // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2018. no. 65. pp. 32–37. 8. Popov D.I. Adaptive suppression of clutter // Cifrovaja obrabotka signalov. 2014. no. 4. pp. 32-37. (in Russian). 9. Popov D.I. Adaptivnije regektornjie filtrij kaskadnogo tipa // Cifrovaya obrabotka signalov. 2016. no. 2. pp. 53-56. (in Russian). 10. Popov D.I. Adaptive notch filter with real weights // Cifrovaya obrabotka signalov. 2017. no. 1. pp. 22-26. (in Russian). 11. Popov D.I. Optimizacja nerekursivnjih regektornjie filtrov s chastichnoj adaptaciej // Cifrovaya obrabotka signalov. 2018. no. 1. pp. 28-32. (in Russian). 12. Popov D.I. Optimizacija rezhektornyh fil'trov po verojatnostnomu kriteriju // Cifrovaja obrabotka signalov. 2021. no. 1. P. 55-58. (in Russian). 13. Popov D.I. Obrabotka nejekvidistantnyh signalov na fone passivnyh pomeh // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2022. no. ¹ 80. pp. 24–31. 14. Popov D.I. Rezhektirovanie passivnyh pomeh pri vobuljacii perioda povtorenija // Radiotehnika. 2015. no. 5. pp. 97-101. 15. Popov D.I. Optimizacija sistem obrabotki mnogochastotnyh radiolokacionnyh signalov // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2019. no. 67. pp. 11–18. 16. Repin V.G., Tartakovskij G.P. Statisticheskij sintez pri apriornoj neoprede-lennosti i adaptacija informacionnyh system (Statistical synthesis with a priori uncertainty and adaptation of information systems). M.: Sov. radio, 1977. 432 p. Quality indicators of the DFT-based algorithm for narrow-band interference rejection under various functions of the preliminary weighing 2. Davidovici S., Kanterakis E.G. Narrow-Band Interference Rejection Using Real-Time Fourier Transforms // IEEE Transactions on Communications. 1989. vol. 37. no 7. pp. 713–722. 3. Cifrovaja chastotnaja selekcija signalov (Digital frequency selection of signals) / V.V. Vityazev. M.: Radio i svjaz', 1993. 240 p. 4. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov modulyatsiei nesushchei psevdosluchainoi posledovatel'nost'yu (Noise immunity of radio communication systems with the expansion of the spectrum of signals by modulation of the carrier pseudo-random sequence) / V.I. Borisov, V.M. Zinchuk, A.E. Limarev, N.P. Mukhin, G.S. Nakhmanson. M.: Radio i svyaz', 2003. 640 p. 5. Shilov A.I., Bakit'ko R.V., Pol'shhikov V.P., Hackelevich Ja.D. Predvaritel'naja obrabotka shumopodobnyh signalov pri nalichii sil'nyh interferencionnyh pomeh (Preprocessing of spread spectrum signals in the presence of strong interference) // Radiotehnika. 2005. no 7. pp. 31–35. 6. Bakit'ko R.V., Pol'shhikov V.P., Shilov A.I., Hackelevich Ja.D., Boldenkov E.N. Ispol'zovanie vesovyh funkcij dlja predvaritel'noj obrabotki shumopodobnyh signalov pri nalichii sil'nyh interferencionnyh pomeh (Using weighting functions for preprocessing spread spectrum signals in the presence of strong interference) // Radiotehnika. 2006. no 6. pp. 13–17. 7. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Design principles and functioning) / ed. by A.I. Perov, V.N. Kharisov. Ì.: Radiotekhnika. 2010. 800 p. 8. Kuzmin E.V. Povyshenie effektivnosti obrabotki signalov na fone garmonicheskoi pomekhi za schet vybora funktsii predvaritel'nogo vzveshivaniya dlya chastotnogo rezhektora (Increasing the efficiency of the signals processing in case of continuous wave interference by choosing the function of the preliminary weighting for frequency notch) // Tsifrovaya obrabotka signalov (Digital signal processing). 2021. no 4. pp. 16–20. 9. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh (Theory and technique of processing radar information against the background of interference) / Ja.D. Shirman, V.N. Manzhos. M.: Radio i svyaz', 1981. 10. Okonnye funkcii dlja garmonicheskogo analiza signalov (Window functions for harmonic analysis of signal) / V.P. Dvorkovich, A.V. Dvorkovich. M.: Tehnosfera, 2016. 208 p. 11. Kuzmin E.V., Zograf F.G. Vliyanie garmonicheskoi pomekhi na effektivnost' protsedury besporogovogo poiska shumopodobnogo signala po vremeni zapazdyvaniya s perekhodom v chastotnuyu oblast' opredeleniya (Influence of continuous wave interference on the efficiency of the non-threshold search procedure for a noise-like signal by delay time with transition to the frequency domain) // Radiotekhnika i elektronika (Radioengineering & Electronics). 2022. V. 67. no 8. pp. 774–781. 12. Kuzmin E.V. Sravnitel'nyj analiz jeffektivnosti dvuh spektral'nyh procedur predvaritel'noj obrabotki shumopodobnogo signala na fone garmonicheskoj pomehi i shuma (Comparative analysis of the efficiency of two spectral procedures for pre-processing a spread spectrum signal in case of continuous wave interference and noise) // 24th International conference «Digital signal processing and its applications» («DSPA–2022»): Proceedings. Vol. XXIV. 2022. pp. 173–176.
A functionally-oriented model of the formation of a meteorological product in the x-range from hydrometeors of a supercooled liquid with full polarization reception 2. Park, H., The hydrometeor classification algorithm for the polarimetric WSR- 88D: Description and application to an MCS / H. Park, A. Ryzhkov, D. Zrnic and K. Kim // Weather Forecasting, 24, 730–748, 2009. 3. Liu, H. Classification of hydrometeor based on polarimetric radar measurements: Development of fuzzy logic and neuro fuzzy systems and in situ verification / H. Liu, V. Chandrasekar // J. Atmos. Oceanic Technol, vol.17, 2000, pp. 140–164. 4. Ryzhkov A., Radar polarimetry at S, C and X bands comparative analysis and operational implications, / A. Ryzhkov and D. Zrnic // in Proc. 32nd Conf. Radar Meteorol., 2005. 5. G. Zhang, Weather Radar Polarimetry. CRC Press, Inc, FL, United States, 2016, p. 322. 6. Marzano F., Supervised fuzzy-logic classification of hydrometeors using C-band weather radars / F. Marzano, D. Scaranari, and G. Vulpiani // IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3784–3799, Nov. 2007. 7. Mishchenko M., T-matrix computations of light scattering by nonspherical particles: A review / M. I. Mishchenko, L. D. Travis, and D. W. Mackowski // J. Quant. Spectrosc. Radiat. Transfer, 55, 535-575 (1996). 8. Ulbrich, C. W. Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22, 1764–1775, 1983. 9. P. Ray, Broadband complex refractive indices of ice and water, Appl. Opt., vol. 11, no. 8, pp. 1836–1844, Aug. 1972. 10. S. Warren, Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., vol. 23, no. 8, pp. 1206–1225, Apr. 1984. If you have any question please write: info@dspa.ru |