Digital Signal Processing

Russian
Scientific & Technical
Journal


“Digital Signal Processing” No. 4-2023

In the issue:

- parametric Fourier transformation
- adaptive filtering quality estimation
- adaptive antenna arrays
- multi-frequency signals processing
- intelligent routing
- MIMO communication channels classification
- quality estimation of colour images
- fractional delay FIR filter

- pseudo-random signal searching
- modeling of neural network sonar detector images
- recognition of radar signals
- digital filters analysis in the SimInTech environment



Theory, methods and algorithms for determining envelopes of discrete finite real signals on the basis of parametric Fourier transformations
N.V. Ponomareva, e-mail: yolkanv@gmail.com
O.V. Ponomareva, e-mail: ponva@mail.ru
Sevastopol State University, Russia, Sevastopol
Kalashnikov Izhevsk State Technical University (Kalashnikov ISTU), Russia, Izhevsk


Keywords: discrete Hilbert transform, discrete Fourier transform, parametric discrete Fourier transform, signal envelope, instantaneous signal frequency, instantaneous signal phase.

Abstract
The requirements to the efficiency of digital signal processing systems are constantly growing. Simultaneously the sphere of their application extends and the problems solved by such systems become more complicated. Thus, there is a necessity of theory development and improvement of methods and algorithms for digital processing of discrete finite signals. A lot of methods are based on discrete Fourier transform and discrete Hilbert transform. Discrete Fourier Transform (DFT) has useful analytical and statistical properties and DFT is implemented using fast algorithms (FFT). As a result, FFT has the most important place in digital Fourier processing of finite real signals However, FFT has the following disadvantages (negative effects in time and frequency domain): aliasing effect, picket fence effect, leakage effect and scalloping effect. To decrease the disadvantages of FFT, the basic theory of digital signal processing in parametric Fourier bases is considered in this paper. Parametric discrete Fourier transform (DFT-P) is the generalization of classical discrete Fourier transform and coincides with DFT at zero parameter value. The parameter in DFT-P allows one to "control" the analytical properties of the unitary transform. Two types of descriptions of discrete finite real (DFR) signals are considered in this paper. The first type is the sum of discrete harmonic components. The second type uses instantaneous parameters of a DFR signal: instantaneous amplitude, instantaneous phase, and envelope. These two types of DFR signal description are widely used in digital processing systems. They allow representing and revealing information about properties and states of investigated objects, phenomena and processes. Discrete Hilbert Transform (DHT) plays an important role in the second type of DFR signal description. The DHT is the only linear operator that allows unambiguously determining the instantaneous parameters of the DFD signal, if quite understandable requirements are met. The study of the properties of discrete Hilbert transform of DFR signals has been carried out in this work, and various types of envelopes of DFR signals have been considered. Envelope determination with parametric Fourier transform were developed and investigated. Appropriate mathematical modeling was performed to confirm the obtained theoretical results.


References

1. Ponomareva O.V. Razvitie teorii i razrabotka metodov i algoritmov cifrovoj obrabotki informacionnyh signalov v parametricheskih bazisah Fur'e [Development of the theory and development of methods and algorithms for digital processing of information signals in parametric Fourier bases]: Dissertation of the doctor of technical sciences]: Izhevsk, 2016, 357 p. (in Russ.).

2. Ponomarev V.A, Ponomareva O.V., Ponomareva N.V. [The method of fast calculation of the discrete Hilbert transform in the frequency domain]. Modern information and electronic technologies, 2014, no.15, pp. 183-184 (in Russ.).

3. Ponomareva N.V., Ponomareva O.V., Hvorenkov V.V. [Determination of anharmonic discrete signal envelope based on the Hilbert transform in the frequency domain]. Intelligent systems in production, 2018, vol.16, no.1, pp.33-40 (in Russ.).

4. Ponomareva Olga, Ponomarev Alexey, Smirnova Natalia. Hilbert envelope extraction from real discrete finite signals considering the nonlocality of Hilbert transform. 22th International Conference on Digital Signal Processing and its Applications, DSPA 2020. 22. 2020. Ñ. 9213286.

5. Marpl-ml. S.L. Cifrovoj spektral'nyj analiz i ego prilozheniya: Perevod s angl. [Digital Spectral Analysis and its Applications]. Moscow, World., 1990, 584 p.(in Russ.)

6. Dudgeon D.E. Multidimensional Digital Signal Processing Prentice Hall, 1995. — 406 p.

7. Prehtt U. Cifrovaya obrabotka izobrazhenij. V 2-h knigah. Perevod s angl. [Digital image processing]. Moscow, World., 1982, 790 p.(in Russ.)

8. Vakman D.E. [On the definition of the concepts of amplitude, phase and instantaneous signal frequency]. Radiotekhnika i elektronika. 1972, ¹5, pp. 973-978 (in Russ.)

9. Vanshtejn L.A., Vakman D.E. Razdelenie chastot v torii kolebanij i voln [Separation of frequencies in thorium oscillations and waves]. Moscow, Nauka, 1983. 288 p. (in Russ.)

10. Fink L.M. Signaly. Pomekhi. Oshibki [Signals. Interference. Mistakes] Moscow, Radio and communications, 1984. 256 p. (in Russ.)

11. Lajons R. Cifrovaya obrabotka signalov / 2-e izd., per. s angl [Digital signal processing / 2nd ed., Trans. from English] Moscow, Binom-Press, 2006.636 p. (in Russ.)

12. Rabiner L., Gold B. Theory and Application of digital signal processing, New Jersey, Prentice-hall, 1975, 772 p.

13. Trahtman A.M. Vvedenie v obobshchennuyu spektral'nuyu teoriyu. [Introduction to Generalized Spectral Theory]. Moscow, Soviet radio, 1982, 352 p. (in Russ.)

14. Alexey V. Ponomarev Systems Analysis of Discrete Two-Dimensional Signal Processingin Fourier Bases. Springer Nature Switzerland AG 2020 M. Favorskaya and L. C. Jain (eds.), Advances in Signal Processing, Intelligent Systems Reference Library 184, https://doi.org/10.1007/978-3-030-40312-6_7

15. Olga V. Ponomareva, Alexey V. Ponomarev and Natalya V. Smirnova Sliding Spatial Frequency Processing of Discrete Signals. Springer Nature.Switzerland AG 2020. M. Favorskaya and L. C. Jain (eds.), Advances in Signal Processing, Intelligent Systems Reference Library 184, https://doi.org/10.1007/978-3-030-40312-6_8.

16. Olga V. Ponomareva, Alexey V. Ponomarev and Natalya V. Smirnova Interpolation of Real and Complex Discrete Signals in the Spatial Domain. Springer Nature Switzerland AG 2020.M. Favorskaya and L. C. Jain (eds.), Advances in Signal Processing, Intelligent Systems Reference Library 184, https://doi.org/10.1007/978-3-030-40312-6_9

17. Ponomareva O., Ponomarev A., Smirnova N. Complex-Conjugate Symmetry of Coefficients of Two-Dimensional Discrete Fourier Transform with Variable Parameters of Real Signals 2022 24th International Conference on Digital Signal Processing and its Applications, DSPA 2022, 2022.

18. Ponomarev A., Ponomareva O., Smirnova N. 2D Discrete Fast Fourier Transform with variable parameters. 2022 24th International Conference on Digital Signal Processing and its Applications, DSPA 2022, 2022.

19. Ponomarev A., Ponomareva O., Smirnova N. Evolution of One-Dimensional and Two-Dimensional Discrete Fourier Transform 2022 24th International Conference on Digital Signal Processing and its Applications, DSPA 2022, 2022.

20. Ponomarev A., Ponomareva O., Smirnova N. Fast Algorithms for Two-Dimensional Discrete Fourier Transform of Vibroacoustic Signals in Solving Problems of Control and Technical Condition of Machines and Mechanisms 2022 International Conference on Dynamics and Vibroacoustics of Machines, DVM 2022, 2022.

21. Ponomarev A., Ponomareva O., Smirnova N. Two-Dimensional Discrete Fourier Transform with Variable Parameters in Solving Fundamental Problems of Dynamics and Vibrodiagnostics of Machines. 2022 International Conference on Dynamics and Vibroacoustics of Machines, DVM 2022, 2022.

22. Ponomareva O.V., Ponomarev A.V. Theoretical Foundations of digital Vector Fourier Analysis of two-dimensional Signals Padded with Zero Samples|// Information and Control Systems. 2021. ¹ 1 (110). Ñ. 55-64.

23. Ponomareva O.V., Ponomarev A.V, Smirnova N.V. [Algoritmy pryamogo i obratnogo parametricheskogo bystrogo preobrazovaniya Fur'e]. Information Technology. 2022, no. 1, pp. 9-19. (in Russ.)

24. Ponomareva O.V., Ponomarev A.V, Smirnova N.V. [Dvumernye bystrye preobrazovaniya Fur'e s var'iruemymi parametrami]. Digital signal processing. 2022, no 3, pp.3-13. (in Russ.)

25. Ponomareva O.V., Ponomarev A.V, Smirnova N.V. [Perekrestnaya kompleksno-sopryazhennaya simmetriya koefficientov dvumernogo diskretnogo preobrazovaniya Fur'e c var'iruemymi parametrami dejstvitel'nyh signalov]. Digital signal processing. 2022, no 4, pp.3-12. (in Russ.)

 


Quality estimation of adaptive filtering in problem of linear object identification
Djigan V.I., e-mail: djigan@ippm.ru

Institute for design problems in microelectronics of Russian Academy of Sciences Moscow, Russia

Keywords: identification of linear system; adaptive filter; impulse response; misalignment; Echo Return Loss Enhancement (ERLE).

Abstract

The problem of the identification of a linear object is a classical task of adaptive signal processing. It is widely used to identify the electrical and the acoustic impulse responses in the echo cancellers, in the active noise cancellation devices and in a number of other devices. Using an example of a linear impulse response identification, the paper shows that the such performance indicators of an adaptive filter in this problem as the misalignment (the Euclidean distance between the identified impulse response and the impulse response of the adaptive filter) and the Echo Return Loss enhancement (ERLE) are inverse to each other if their values are expressed in linear scale or are sign-opposite to each other in logarithmic scale. The truth of this result has also been proven mathematically in the case of the usage a signal with uncorrelated samples as a training one (input one for identified object and adaptive filter) for the identification. This makes it possible to evaluate the quality of the identification under the consideration only the mismatch. For that it is sufficient to conduct only one experiment. This, in turn, allows not to conduct the statistical simulation, which requires a large number of experiments, when estimating the ERLE directly. In addition, it has been proven that, having the values of the expected impulse responses obtained by a preliminary study of the identified objects, for a given number of weights of the adaptive filter it is possible to estimate the achievable values of the misalignment and the ERLE, or to estimate the needed number of the weights, which ensure the required values of the misalignment and ERLE.


References
1. Oppenheim A. V., Schafer R. W. Discrete-time signals processing, Prentice-Hall, 2009, 1144 p.

2. Farhang-Boroujeny B. Adaptive filters theory and applications, 2-nd ed. John Wiley & Sons, 2013, 778 p.

3. Djigan V.I. Adaptivnaya fil'traciya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms). M: Tekhnosfera, 2013. 528 s. (In Russian).

4. Haykin S. Adaptive filter theory, 5th ed., Pearson Education Inc., 2014, 889 p.

5. Diniz P. S. R. Adaptive filtering algorithms and practical implementation, 5-th ed. Springer, 2020, 495 p.

6. Benesty J., Huang Y., Eds. Adaptive signal processing: applications to real-world problems. Springer-Verlag, 2003, 356 p.

7. Digital network echo cancellers, ITU-T Recommendation G.168. Series G: Transmission systems and media, digital systems and networks. International telephone connections and circuits – Apparatus associated with long-distance telephone circuits, Geneva, 2001, 116 p.

8. Allen J. B., Berkley D. A. Image method for efficiently simulation small-room acoustics, Journal of Acoustical Society of America, 1979, vol. 64, no 4, pp. 943–950.

9. Lehmann E. A., Johansson A. M. Diffuse reverberation model for efficient image-source simulation of room impulse responses, IEEE Trans. Audio, Speech, and Language Processing, 2010, vol. 18, no 6, pp. 1429–1439.

10. Chen W. Y. Simulation techniques and standards development for digital subscriber line systems, Macmillan Technical Publishing, 1998, 644 p.

11. Starr T., Cioffi J. M., Silverman P. J. Understanding digital subscriber line technology, Prentice Hall, 1999, 474 p.


Cylindric Adaptive antenna Arrays
Djigan V.I., e-mail: djigan@ippm.ru

Institute for design problems in microelectronics of Russian Academy of Sciences Moscow, Russia

Keywords: cylindric antenna array; adaptive antenna array; Recursive Least Squares (RLS); Linear Constraints (LC); radiation pattern.

Abstract
This article discusses an adaptive antenna array in which a linear constraint is used to maintain the required level of the main lobe of the radiation pattern (beam) when calculating the array weights using a recursive least squares algorithm. The antenna array has a cylindrical shape, which allows it to carry out a wide-angle scanning in two planes. It is shown that in such an array, the steering vector used to set the linear constraints has to take into consideration the values of the radiation pattern of each of its antennas in the direction of the information signal source. This is due to the fact that in practice antennas are not omnidirectional and are oriented into different fixed directions in accordance with their placement on the array surface. The procedures of the linearly-constrained algorithms for calculation the weights of a single-beam and a multibeam adaptive antenna array are provided. Due to the directivity of the antennas and their multidirectional orientation, the effective number of antennas (channels or weights) that determines the maximal number of interference that a cylindrical adaptive antenna array is able to suppress is significantly less than the total number of its antennas. For the same reason, in the steady state, the mean square error between the array output signal and its desired signal is only slightly less than the reciprocal of the signal-to-noise ratio in the channels of the array, if the effective number of its antennas is sufficient to suppress the interferences. Otherwise, this mean square error is significantly greater than the mentioned the mean square error value. These results are confirmed by the simulation of the various scenarios of the interference suppression using a cylindrical adaptive antenna array. These results should be taken into consideration when designing the complex-shaped adaptive antenna arrays in which the antennas are not placed on a flat surface.


References
1. Benenson L. S., Zhuravlev V. A., Popov S. V., Postnov G. A. Antennye reshetki. Metody rascheta i proektirovaniya (Antenna arrays. Computational and design methods). M.: Sovetskoe radio, 1966. 367 s. (In Russian).

2. Aktivnye fazirovannye antennye reshetki (Active phased arrays) / Pod red. D. I. Voskresenskogo i A. I. Kanashchenkova. M.: Radiotekhnika, 2004. 488 s. (In Russian)

3. Brown A. D., Boeringer D., Cooke T. Electronically scanned arrays. MATLAB® modelling and simulation. CRC Press, 2012. 214 p.

4. Balanis C. A. Antenna theory: analysis and design. 4-th ed. John Wiley & Sons, Inc., 2016. 1095 p.

5. Maillou R. J. Phased array antenna handbook, 3-rd ed. Artech House, Inc., 2017. 506 p.

6. Zhuravlev A. K., Lukoshkin A. P., Poddubnij S. S. Obrabotka signalov v adaptivnyh antennyh reshetkah (Signal processing in adaptive antenna arrays). L.: Izdatel'svo Leningradskogo universiteta, 1983. 240 s. (In Russian).

7. Compton R. T. Adaptive antennas. Concepts and performance. Prentice Hall, 1988. 448 p.

8. Pistol'kors A. A., Litvinov O. S. Vvedenie v teoriyu adaptivnyh antenn (Introduction in adaptive arrays theory). M.: Nauka, 1991. 200 s. (In Russian).

9. Hudson J. E. Adaptive array principles. The Institution of Engineering and Technology, 2007. 253 p.

10. Monzingo R. A., Haupt R. L., Miller T. W. Introduction to adaptive arrays, 2nd ed. SciTech Publishing, 2011. 510 p.

11. Widrow B., Stearns D. D. Adaptive signal processing. Pearson. 1985. 528 p.

12. Farhang-Boroujeny B. Adaptive filters theory and applications. 2-nd ed. John Wiley & Sons, 2013. 778 p.

13. Djigan V. I. Adaptivnaya fil'traciya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms). M: Tekhnosfera, 2013. 528 s. (In Russian).

14. Haykin S. Adaptive filter theory. 5-th ed. Pearson Education Inc., 2014. 889 p.

15. Diniz P. S. R. Adaptive filtering algorithms and practical implementation. 5-th ed. Springer, 2020. 495 p.

16. Giordano A. A., Hsu F. M. Least square estimation with application to digital signal processing. John Willey & Sons, Inc., 1985. 412 p.

17. Djigan V. I. Mnogokanal'nye RLS- i bystrye RLS-algoritmy adaptivnoj fil'tracii (Multichannel and fast RLS adaptive algorithms). Uspekhi sovremennoj radioelektroniki (Journal Achievements of Modern Radioelectronics). 2004. ¹ 11. S. 48-77. (In Russian).

18. Djigan V. I. Recursive least squares – an idea whose time has come. Proceedings of the 7-th International Workshop on Spectral Methods and Multirate Signal Processing. Moscow, Russia, September 1 – 2, 2007. 4 p.

19. Kuo S. M., Gan W.-S. Digital signal processors: architectures, implementations and applications. Prentice Hal, 2004. 624 p.

20. Woods R., McAllister J., Lightbody G., Ying Yi. FPGA-based implementation of signal processing systems. 2-nd ed. Willey, 2017. 360 p.

21. Welch T. B., Wright H. G., Morrow M. G. Real-time digital signal processing from MATLAB to C with the TMS320C6x DSPs. 3-rd ed. CRC Press, 2017. 480 p.

22. Vityazev S. V. Cifrovye processory obrabotki signalov (Digital signal processors). M.: Goryachaya liniya-Telkom, 2017. 100 s. (In Russian).

23. Steyskal H. Digital beamforming antennasþ Microwave Journal. 1987. ¹ 1. P. 107-124.

24. Litva J., Lo T. K.-Y. Digital beamforming in wireless communications. Artech House., 1996. 301 p.

25. Grigor'ev L. N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannyh antennyh reshetkah (Digital beamforming in phased arrays). M.: Radiotekhnika, 2010. 144 p. (In Russian).

26. Slyusar V. I. Razvitie skhemotekhniki CAR: nekotorye itogi. Chast' 1 (Solutions in antenna arrays with digital beamforming: some results. Part 1) // Pervaya milya. Last mile (First Mile. Last Mile). 2018. ¹ 1. C. 72-77. (In Russian).

27. Slyusar V. I. Razvitie skhemotekhniki CAR: nekotorye itogi. Chast' 2 (Solutions in antenna arrays with digital beamforming: some results. Part 2) // Pervaya milya. Last mile (First Mile. Last Mile). 2018. ¹ 2. C. 76-80. (In Russian).

28. Djigan V. I. Circular adaptive antenna array. Proceedings of the 19-th IEEE East-West Design & Test Symposium (EWDTS). Batumi, Georgia, September 10 – 13, 2021. P. 21–24.

29. King R. W. P., Fikioris G. J., Mack R. B. Cylindrical antennas and arrays. Cambridge University Press, 2005. 652 p.

30. Frost O. L. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE. 1972. Vol. 60. ¹ 8. P. 926-935.

31. Djigan V. I. Some tricks of calculations in MIL RLS algorithm. Proceedings of the 23-th International Conference on Digital Signal Processing and its Applications (DSPA-2021). Moscow, Russia, March 24 – 26, 2021. 4 p.

32. Pletneva I. D., Djigan V. I. Modelirovanie obrabotki signalov v cifrovyh antennyh reshetkah (Signal processing simulation in antenna arrays with digital beamforming). Issledovaniya v oblasti cifrovyh sistem svyazi (Research in Modern Digital Telecommunication Systems). M.: Izd.MIET, 2007. P. 36-43. (In Russian).

33. Makarov S. N., Iyer V., Kulkami S., Best S. R. Antenna and EM modelling with MATLAB® Antenna Toolbox. John Wiley and Sons, Inc., 2021. 319 p.

 


Analysis of single-channel processing systems multi-frequency signals

D.I.Popov, e-mail: adop@mail.ru
The Ryazan State Radio Engineering University (RSREU), Russia, Ryazan

Keywords: detection algorithm, analysis, Doppler phase, multi-frequency signal, radial velocity of the target, detection characteristic, measurement accuracy.

Abstract
The analysis of the detection characteristics and the accuracy of measuring the radial velocity of the target of single-channel multi-frequency signal processing systems for different types of interperiod processing (optimal or quasi-optimal) in frequency channels is carried out.

The use of the matrix eigenvalue method led to the formation of the characteristic function of the output (decisive) statistics to a form convenient for integration and obtaining calculation expressions for the probabilities of false alarm and correct detection, with the help of which the desired detection characteristics are determined.

A comparative analysis of the characteristics of the appearance of single-channel systems for processing multi-frequency signals against a back-ground of white noise with a different nature of interperiod processing (coherent or incoherent) in frequency channels and an analysis of the accuracy of measuring the radial velocity of the target depending on the parameters of the multi-frequency signal.

Analysis of the efficiency of detection and measurement of multi-frequency signals shows that the proposed processing systems based on combining the results of single-channel coherent accumulation of products of complex conjugate samples in each frequency channel allow, with an optimal number of channels, to obtain energy gains compared with single-frequency systems and multi-frequency systems based on incoherent accumulation, as well as to increase the accuracy of unambiguous measurements of the radial velocity of the target.

In particular, the gains in the signal-to-noise threshold ratio of a multi-frequency signal detection system, invariant in each frequency channel to Doppler phase shifts, compared with a multi-channel Doppler frequency system, are established.

References
1. Skolnik M.I. Introduction to Radar System, 3rd ed., New York: McGraw-Hill, 2001. – 862 p.

2. Richards M.A., Scheer J.A., Holm W.A. (Eds.). Principles of Modern Radar: Basic Principles. New York: SciTech Publishing, IET, Edison. 2010. – 924 p.

3. Melvin W. L., Scheer J.A. (Eds.). Principles of Modern Radar: Advanced Techniques. New York: SciTech Publishing, IET, Edison, 2013. – 846 p.

4. Radar Handbook / Ed. by M.I. Skolnik. 3rd ed. McGraw–Hill, 2008. 1352 p.

5. Popov D.I. Adaptacija nerekursivnyh rezhektornyh fil'trov // Izvestija vuzov. Ra-diojelektronika. 2009. vol. 52. no. 4. P. 46-55. (in Russian).

6. Popov D.I. Autocompensation of the Doppler phase of clutter // Cifrovaja obrabotka signalov. 2009. no 2. pp. 30–33. (in Russian).

7. Popov D.I. Avtokompensacija doplerovskoj fazy mnogochastotnyh passivnyh pomeh // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2018. no. 65. pp. 32–37.

8. Popov D.I. Adaptive suppression of clutter // Cifrovaja obrabotka signalov. 2014. no. 4. pp. 32-37. (in Russian).

9. Popov D.I. Adaptivnije regektornjie filtrij kaskadnogo tipa // Cifrovaya obrabotka signalov. 2016. no. 2. pp. 53-56. (in Russian).

10. Popov D.I. Adaptive notch filter with real weights // Cifrovaya obrabotka signalov. 2017. no. 1. pp. 22-26. (in Russian).

11. Popov D.I. Optimizacja nerekursivnjih regektornjie filtrov s chastichnoj adaptaciej // Cifrovaya obrabotka signalov. 2018. no. 1. pp. 28-32. (in Russian).

12. Popov D.I. Optimizacija rezhektornyh fil'trov po verojatnostnomu kriteriju // Cifrovaja obrabotka signalov. 2021. no. 1. P. 55-58. (in Russian).

13. Kuz'min S.Z. Cifrovaja radiolokacija. Vvedenie v teoriju (Digital radar. Introduction to Theory). Kiev: KViC, 2000. 428 p. (in Russian).

14. Cifrovaja obrabotka signalov v mnogofunkcional'nyh radiolokatorah. Metody. Algoritmy. Apparatura: monografija (Digital signal processing in multifunctional radars. Methods. Algorithms. Equipment: monograph) / pod red. G.V. Zajceva. M.: Radiotehnika, 2015. 376 p. (in Russian).

15. Klochko V.K., Kuznecov V.P., Levitin A.V. i dr. Algoritmy opredelenija koordi-nat dvizhushhihsja celej na baze mnogokanal'noj doplerovskoj RLS // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2015. no. 53. pp. 3-10. (in Russian).

16. Klochko V.K., Kuznecov V.P., Vu Ba Hung. Ocenivanie parametrov radiosignalov ot podvizhnyh malovysotnyh ob#ektov // Vestnik Rjazanskogo gosudarstvennogo radioteh-nicheskogo universiteta. 2022. no. ¹ 80. pp. 12-23. (in Russian).

17. Popov D.I., Belokrylov A.G. Sintez obnaruzhitelej-izmeritelej mnogochastotnyh signalov // Izvestija vuzov. Radiojelektronika. 2001. v. 44. no. 11. pp. 33-40. (in Russian).

18. Popov D.I. Analiz mnogokanal'nyh obnaruzhitelej mnogochastotnyh signalov // Cifrovaja obrabotka signalov. 2023. no. 2. pp. 49-53. (in Russian).


Intelligent Multipath Routing in Software Defined Networks Based on Firefly Swarm Behavior Model
D. A. Perepelkin, e-mail: perepelkin.d.a@rsreu.ru
V. T. Nguyen, e-mail: nguyenvantinrsreu@gmail.com
The Ryazan State Radio Engineering University (RSREU), Russia, Ryazan

Keywords:
software defined networks, SDNLoadBalancer, intelligent routing, multipath routing, swarm intelligence, firefly algorithm, firefly swarm.

Abstract
Software defined networks (SDN) is a new architectural approach that separates network management from low-level data transfer functions. This approach makes it possible to make network management completely programmable, and abstract applications and network services from the network infrastructure. SDN have a number of advantages over traditional networks: they are flexibly manageable, dynamic, adaptive, and allow efficient use of physical equipment. The concept of multipath routing in the SDN allows reducing congestion in the network by redistributing network traffic and ensuring a given level of quality of service. The aim of the work is to develop a scientific approach to intelligent multipath routing in SDN based on the firefly swarm behavior model. The article studies and analyzes the model and algorithm of a swarm of fireflies for solving the problem of multipath routing in the SDN. A visual software system SDNLoadBalancer has been developed and an experimental SDN topology has been designed, which makes it possible to study in detail the processes of multipath routing in the SDN based on the proposed approach. The paper compares the proposed approach with the results of the work of the classical genetic algorithm and the artificial bee colony algorithm. The results of experimental studies have shown the effectiveness of the application of the firefly swarm model and algorithm in solving the problem of multipath routing in the SDN, made it possible to obtain results close to optimal, and also reduce the transmission delay jitter in the network.

References
1. Korjachko V.P., Perepelkin D.A. Programmno-konfiguriruemye seti // Uchebnik dlja vuzov. – M.: Gorjachaja linija – Telekom, 2020. 288 pp. (in Russian).

2. Solozobov A.S. Masshtabiruyemost' i nadozhnost' programmno-konfiguriruyemykh setey // Informatsionnyye tekhnologii i telekommunikatsii. 2014. T. 2. ¹ 3. pp. 111-115 (in Russian).

3. Kolyadenko YU.YU., Belousova Ye.E. Programmno-konfiguriruyemyye seti na baze protokola openflow i ikh kharakteristiki // ScienceRise. 2016. T. 3. ¹ 2 (20). pp. 11-16 (in Russian).

4. Volkov A.S., Baskakov A.Ye. Razrabotka protsedury dvunapravlennogo poiska dlya resheniya zadachi marshrutizatsii v transportnykh programmno-konfiguriruyemykh setey // Trudy MAI. 2021. ¹ 118 (in Russian).

5. Polezhayev P.N., Bakhareva N.F., Shukhman A.Ye. Razrabotka effektivnogo geneticheskogo algoritma marshrutizatsii i obespecheniya kachestva obsluzhivaniya dlya programmno-konfiguriruyemoy seti // Vestnik Orenburgskogo gosudarstvennogo universiteta. 2015. ¹ 1 (176). pp. 229-233 (in Russian).

6. Polezhayev P.N., Ushakov YU.A., Polyak R.I., Mironov A.P. Primeneniye metodov murav'inoy kolonii v razrabotke effektivnykh algoritmov marshrutizatsii i obespecheniya QoS dlya korporativnykh programmno-konfiguriruyemykh setey // Intellekt. Innovatsii. Investitsii. 2014. ¹ 4. pp. 106-113 (in Russian).

7. Koryachko V.P., Perepelkin D.A., Ivanchikova M.A., Byshov V.S., Tsyganov I.Yu. Analysis QoS Metrics in Software Defined Networks // Proceedings MECO 2017 – IEEE 6th Mediterranean Conference on Embedded Computing (MECO-2017), 2017, pp. 374–378. DOI: 10.1109/MECO.2017.7977240.

8. Manov I.A. Effektivnaya mnogoparametricheskaya marshrutizatsiya trafika v programmno-konfiguriruyemykh setyakh // V sbornike: Tsifrovaya obrabotka signalov i yeyo primeneniye – DSPA-2019. Doklady 21-y Mezhdunarodnoy konferentsii. 2019. pp. 215-220 (in Russian).

9. Venkatesh K, Srinivas L, Krishnan MM, Shanthini A. QoS improvisation of delay sensitive communication using SDN based multipath routing for medical applications // Future Generation Computer Systems 2019; 93: 56–65.

10. Sahhaf S., Tavernier W., Colle D., Pickavet M. Adaptive and reliable multipath provisioning for media transfer in SDN-based overlay networks // Computer Communications 2017; 106: 107–16.

11. Ejaz S., Iqbal Z., Shah P. A., Bukhari B. H., Ali A. Traffic load balancing using software defined networking (SDN) controller as virtualized network function (2019).

12. K. Rajasekaran, Kannan Balasubramanian. Energy Conscious based Multipath Routing Algorithm in WSN, International Journal of Computer Network and Information Security (IJCNIS), Vol.8, No.1, pp.27-34, 2016.DOI: 10.5815/ijcnis.2016.01.04

13. Kulakov Y., Kohan A. Traffic orchestration in data center network based on software-defined networking technology. In: International Conference on Computer Science, Engineering and Education Applications ICCSEEA 2019: Advances in Computer Science for Engineering and Education II, pp. 228-237 (2019).

14. Perepelkin D. A. Konceptual'nyj podhod dinamicheskogo formirovanija trafika programmno-konfiguriruemyh telekommunikacionnyh setej s balansirovkoj nagruzki // Informacionnye tehnologii. 2015. T. 21. ¹ 8. C. 602-610 (in Russian).

15. Korjachko V. P., Perepelkin D. A., Ivanchikova M. A., Byshov V. S., Cyganov I. Ju. Programmnaja infrastruktura i vizual'naja sreda raspredelennoj obrabotki potokov dannyh v programmno-konfiguriruemyh setjah // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2018. ¹ 65. pp. 44-54. DOI: 10.21667/1995-4565-2018-65-3-44-54 (in Russian).

16. Nikul'chev E. V., Pajain S. V., Pluzhnik E. V. Dinamicheskoe upravlenie trafikom programmno-konfiguriruemyh setej v oblachnoj infrastrukture // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2013. ¹ 3 (45), pp. 54-57 (in Russian).

17. Leohin Ju. L., Fathulin T. D. Ocenka vozmozhnosti predostavlenija garantirovannoj skorosti peredachi dannyh v programmno-konfiguriruemoj opticheskoj seti // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2020. ¹ 71. pp. 45-59. DOI: 10.21667/1995-4565-2020-71-45-59 (in Russian).

18. Ushakova M. V., Ushakov Ju. A. Issledovanie seti virtual'noj infrastruktury centra obrabotki dannyh s gibridnoj programmno-konfiguriruemoj kommutaciej // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2021. ¹ 75. pp. 34-43. DOI: 10.21667/1995-4565-2021-75-34-43 (in Russian).

19. Perepelkin D. A., Nguen V. T. Issledovanie i analiz processov mnogoputevoj marshrutizacii i balansirovki potokov dannyh v programmno-konfiguriruemyh setjah na osnove geneticheskogo algoritma // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2022. ¹ 79. pp. 31-48. DOI: 10.21667/1995-4565-2022-79-31-48 (in Russian).

20. Perepelkin D. A., Nguen V. T. Intellektual'naja mnogoputevaja marshrutizacija v programmno-konfiguriruemyh setjah na osnove algoritma iskusstvennoj pchelinoj kolonii // Informacionnye tehnologii. 2022. T. 28. ¹ 8. pp. 395-404. DOI: 10.17587/it.28.395-404 (in Russian).

21. Perepelkin D. A., Ivanchikova M. A., Nguen V. T. Intellektual'naja mnogoputevaja marshrutizacija v programmno-konfiguriruemyh setjah na osnove algoritmov optimizacii murav'inoj kolonii // Informacionnye tehnologii. 2022. T. 28. ¹ 10. pp. 520-528. DOI: 10.17587/it.28.520-528 (in Russian).

22. Perepelkin D. A., Ivanchikova M. A., Nguen V. T. Intellektual'naja mnogoputevaja marshrutizacija v programmno-konfiguriruemyh setjah na osnove algoritma migracii stai ptic // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2022. ¹ 82. S. 44-59. DOI: 10.21667/1995-4565-2022-82-44-59 (in Russian).


Model development and classification of MIMO communication channels in 3D coordinates
A.Yu. Parshin, e-mail: parshin.a.y@rsreu.ru

V.Kh. Nguen , e-mail: khanhkhanhkpr@gmail.com
The Ryazan State Radio Engineering University (RSREU), Russia, Ryazan

Keywords: geometric model of signal propagation, probability density of signal arrival angles, MIMO communication system, distribution of scatterers, three-dimensional model.

Abstract
The work is devoted to investigation and classification of three-dimensional models of MIMO communication channels. The basis for the classification are scenarios for the location of diffusers according to the COST 259 standard. The simulation assumes the distribution of scatterers along a spheroid or ellipsoid, depending on the scenario under consideration. The position of the scatterers is set by angular directions in the angle of the place and azimuth, as well as the distance that the signal travels when propagating between the antenna elements of the transmitting and receiving devices, taking into account the reflection from the scatterer. The paper investigates the parameters of the communication channel in the distribution of scatterers according to a uniform or Gaussian law. The correlation matrix of channel coefficients is calculated. The dependences of the dispersion of the channel coefficient on the position of the scatterers under various scenarios and types of distribution of scatterers are constructed. The correspondence of theoretical calculation and modeling is shown.

The simulation results show that the coefficients of the correlation matrix change little when the sphere of the scatterers is rotated according to scenario A and B of the COST259 model. The distribution of scatterers along an ellipsoid between the transmitting and receiving device in accordance with scenarios C and D leads to the formation of a maximum correlation coefficient in the direction of the transmitting device. The rotation of the coordinates of the scatterers along the ellipsoid around the Ou axis in accordance with scenario E leads to a significant change in the coefficient of the correlation matrix with a maximum when the scatterers are located on the surface of the ellipsoid near the receiving or transmitting devices.

The simulation is consistent with the scenarios of the location of the diffusers according to the COST259 standard. With a fixed location of the receiving and transmitting device, the obtained dependences of the dispersion of the channel coefficients on the angle of rotation of the coordinates of the scatterers can be interpreted as the angular spectrum of the antenna system. In further research, it is proposed to consider the influence of the antenna system parameters on the correlation matrix of channel coefficients at different scenes of the scatterers, as well as to take into account signal losses in the environment and when passing obstacles.

References
1. Flaksman A.G. Adaptivnaya prostranstvennaya obrabotka signalov v mnogokanalnyh informacionnyh sistemah: specialnost’ 01.04.03 «Radiophisica»: diss. doct. phys.-math. science / Flaksman Allexander Grigorievich: Nizhegorodskiy gosudarstvennyj unversitet im. N.I. Lobachevskogo. – Nizhnij Novgorod, 2004. – 306 p.

2. Parshin, Yu.N. Analiz propusknoy sposobnosti kanala peredachi informacii ot bespilotnogo letatelnogo apparata pri netochnoy kanalnoy matrice / Yu.N. Parshin, V.I. Kudryashov // Vestnik Ryazanskogo gosudarstvennogo radiotehticheskogo universiteta. – 2015. – ¹ 52. – p. 19–24.

3. Nawaz, S.J. 3-D Gaussian scatter density propagation model employing a directional antenna at BS / S.J. Nawaz, M.N. Patwary, N.M. Khan, H.Yu. // 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. 2010. Pp 395-400.

4. Alsehaili, M. Angle of arrival statistics of a three-dimensional geometrical scattering channel model for indoor and outdoor propagation environments / M. Alsehaili, S. Noghanian, D. A. Buchanan, A. R. Sebak. // IEEE Progress in Electromagnetic Research. 2010. Vol. 109. Pp 191-209.

5. Tennakoon, P. Three-dimensional geometrical channel modeling with different scatterer distributions / P. Tennakoon, C.B. Wavegedara // The International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2015. Pp 154-160.. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

6. Liberti, J. C. A geometrically based model for line of sight multipath radio channels / J.C. Liberti, T. S. Rappaport // IEEE Vehicular Technology Conf., 844–848, Apr. 1996.

7. Aslam, M.I. Joint and marginal probabilities for time of arrival and angle of arrival using ellipsoidal model / M.I. Aslam, A.Z. Shaikh // 2013 3rd IEEE International Conference on Computer, Control and Communication (IC4).

8. Patzold, M. A space-time channel simulator for MIMO channels based on the geometrical one-ring scattering model / M. Patzold, B. O. Hogstad. // Wireless Communications and Mobile Computing. Special Issue on Multiple-Input Multiple-Output (MIMO) Communications. – Nov. 2004. – V4. – ¹. 7. – P. 727–737.

9. 3GPP TR 25.943 version 9.0.0 Release 9 Deployment aspects (Release 17) ETSI TR 125 943 V9.0.0. – 2022.

10. Parshin, Yu.N. Programmno-apparatnij kompleks testirovaniya kanalnoy matrici MIMO sistemy peredachi informacii ot podvizhnogo objekta / Yu.N. Parshin, P.V. Zharikov, P.À. Kaznacheev // Vestnik Ryazanskogo gosudarstvennogo radiotehticheskogo universiteta. – Ryazan: RSREU. – 2015. – ¹4. – v. 54, part 1. – p. 3-8.

11. Parshin, Yu.N. Issledovanie vliyaniya shiriny spectra sluchajnogo testovogo signala na tochnost ocenivania kompleksnogo koefficienta peredachi kanalov radiotrakta / Yu.N. Parshin, P.V. Zharikov // Vestnik Ryazanskogo gosudarstvennogo radiotehticheskogo universiteta. – Ryazan: RSREU. – 2010. – ¹1, v. 31. – p. 16-19.

12. Parshin, Yu.N. Vliyanie prostranstvennoj korrelyacii na effektivnost optimizacii prostranstvennoj strukturi mnogoantennoj sistemi pri raznesennom prieme / Yu.N. Parshin, A.V. Xendzov // Vestnik Ryazanskogo gosudarstvennogo radiotehticheskogo universiteta. – Ryazan: RSREU, 2006, v. 19. – p. 54-62.


Research of compliance the integrated-multiplicative quality index of digital im-ages and quality mean opinion scores
Alexey S. Sychev, e-mail: sichev.a.s@rsreu.ru
The Ryazan State Radio Engineering University named after V.F. Utkin (RSREU)

Keywords: digital image processing, image quality, expert opinions score, Spearman's rank correlation coef-ficient, multispectral vision systems, enhanced vision system, image enhancement.

Abstract
Reduced visibility while using aircraft and robotic systems could lead to a potential equipment failure and cause life danger. Enhanced vision systems (EVS) are the subset of technical vision systems. They are designed to compensate the negative impact of image perception destructive factors to increase the situational awareness of the pilot or operator. EVS may include optical sensors of a few spectral ranges. In this case, the system is called a multispectral (MEVS). These systems use an information fusion to merge observed scene informative features obtained in different spectral ranges. However, in case of source image corruption under the noise influence, shading, or background illumination, the fusion result content is also corrupted. This work's purpose is to develop a numerical image quality index, allowing a reasonable choice of source images from a few MEVS sensors. This research requires a numerical metric to evaluate the performance of different quality indexes and compare them with each other.

The previously known integrated quality index (IQI) [1] can be calculated based on the values of normalized average brightness, standard deviation, global contrast, number of histogram bins, and entropy. It is shown [2] that an image without any content has an IQI value tending to the maximum possible. This fundamentally does not correspond to subjective assessment. The integrated-multiplicative quality index (IMQI) [2] has been proposed to take into account the signal-to-noise ratio and local image contrast during quality estimating. The IMQI measure has no described disadvantage.

To score the pertinence of quality estimates, it is necessary to compare their values with the values of subjective expert assessments of image quality. This study has been performed using TID2013 dataset images. TID2013 [4] is the set of 3000 images generated from 25 reference images by applying 24 distortions with 5 corruption intensity levels. Each image is accompanied by the expert quality assessment mean opinion score (MOS), obtained by averaging through 985 experiments, and the assessment standard deviation.

The usefulness of an image quality index is defined by how close it's values correlate with actual expert assessments. To evaluate the correlation stability between values and its statistical significance in the sample the Spearman rank correlation coefficient [6] is used, as in [5, 7, 8]. The more stable and more statistically significant the correlation in the sample the higher the Spearmen rank correlation coefficient. Spearman rank correlation coefficient for IQI and MOS is 0.12, but for IMQI and MOS it is 0.26. It is shown that the IMQI numerical values correlate with expert assessments 2.17 times better than the values of the IQI. This fact means that using IMQI to range images in MEVS is preferable to using IQI.

References
1. Gurov V.S., Kolod'ko G.N., Kostyashkin L.N. Obrabotka izobrazhenij v aviacionnyh sistemah tekhnicheskogo zreniya (Avionics vision system image processing) ed. by L.N. Kostyashkin, Niki-forov M.B. // M.: FIZMATLIT. 2016. 235 p.

2. Sychev A.S., Kholopov I.S. Bezetalonnyj integral'no-mul'tiplikativnyj pokazatel' kachestva cifrovyh polutonovyh izobrazhenij (No-reference integrated-multiplicative quality in-dex for digital grayscale images) // Cifrovaya obrabotka signalov (Digital Signal Processing). 2018. ¹3. Pp. 51-57.

3. Laboratory for Image & Video Engineering - The University of Texas at Austin. URL: https://live.ece.utexas.edu/research/quality/subjective.htm.

4. Nikolay Ponomarenko homepage - TID2013. URL: https://www.ponomarenko.info/tid2013.htm.

5. Ponomarenko N., Jin L. Image database TID2013: Peculiarities, results and perspectives // Signal Processing: Image Communication. 2015. Pp. 57 77.

6. Gmurman V.E. Teoriya veroyatnostej i matematicheskaya statistika (Probability theory and mathematical statistics) // M.: YUrajt, 2015. 479 p.

7. Wang Z., Bovik A.C. Image Quality Assessment: From Error Visibility to Structural Similarity // IEEE transactions on image processing. 2004. ¹4. Pp. 600 612.

8. Sheikh H.R., Sabir M.F. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms // IEEE Transactions in Image Processing. 2006. ¹11. Pp. 3441 3452.

9. Sychev A.S., Kholopov I.S. Sravnitel'nyj analiz metodik ocenki moshchnosti shuma na cifrovom izobrazhenii (Comparative analysis of image noise estimation methods) // Infor-macionnye tekhnologii i nanotekhnologii (ITNT-2021) (International Conference on Information Technology and Nanotechnology). 2021. Pp. 20392.


Influence of multitone continuous wave interference on the pseudo-random signal searching and increasing the efficiency of the notch by weighting with Dolph-Chebyshev functions modern modifications
E.V. Kuzmin, e-mail: ekuzmin@sfu-kras.ru
Siberian Federal University (SibFU), Russia, Krasnoyarsk

Keywords: multitone continuous wave interference, pseudo-random signal, interference rejection, correct searching probability, weight function, Fourier procedure.

Abstract
The influence of multitone continuous wave interference (MCWI) on the correct searching probability for a phase shift keyed pseudo-random signal (PSK-PRS) has been studied. Deterministic and chaotic scenarios of frequency localization of MCWI, as well as different compositions of MCWI, are considered. The decrease in the capabilities of the Fourier procedure for searching for PSK-PRS is assessed when varying the power of the MCWI, increasing the number of its interference components from 2 to 25, and changing the spectral “extent” of the presence of components. Statistical modeling was used to obtain families of probabilistic dependencies characterizing the effectiveness of the search for PSK-PRS under observation conditions against the background of MCWI in the absence and presence of rejection measures. Quantitative estimates are given and a significant increase in the efficiency of the aggregate processing of PSK-PRS based on the Fourier search procedure with preliminary rejection using weighting of the samples of the signal and interference mixture based on modern modifications of the Dolph-Chebyshev functions is shown.


References
1. Pomekhozashchishchennost' radiosistem so slozhnymi signalami (Noise immunity of radio systems with complex signals) / G.I. Tuzov, V.A. Sivov, V.I. Prytkov, Yu.F. Uryadnikov, Yu.A. Dergachev, A.A. Sulimanov. M.: Radio i svyaz', 1985. 264 p.

2. Smirnov N.I., Gorgadze S.F. Pomekhoustoichivost' asinkhronnykh sistem peredachi s shumopodobnymi signalami pri deistvii uzkopolosnykh pomekh (Noise immunity of asynchronous transmission systems with noise-like signals under the action of narrow-band interference) // Radiotehnika (Journal Radioengineering). 1993. no 7. pp. 27–36.

3. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Design principles and functioning) / ed. by A.I. Perov, V.N. Kharisov. Ì.: Radiotekhnika. 2010. 800 p.

4. Avdeev V.A., Koshkarov A.S., Konnov E.V. Obnaruzhenie pomekh v chastotnykh diapazonakh kosmicheskikh navigatsionnykh system (Detection of interference in the frequency ranges of space navigation systems) // Zhurnal radiojelektroniki [jelektronnyj zhurnal] (Journal of Radio electronics). 2015. no 10. URL: http://jre.cplire.ru/jre/oct15/12/text.pdf.

5. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov modulyatsiei nesushchei psevdosluchainoi posledovatel'nost'yu (Noise immunity of radio communication systems with the expansion of the spectrum of signals by modulation of the carrier pseudo-random sequence) / V.I. Borisov, V.M. Zinchuk, A.E. Limarev, N.P. Mukhin, G.S. Nakhmanson. M.: Radio i svyaz', 2003. 640 p.

6. Borio D. GNSS acquisition in the presence of continuous wave interference // IEEE Transactions on aerospace and electronic systems. 2010. vol. 46. no 1. pp. 47–60.

7. Kuzmin E.V. O vlijanii kvantovanija po urovnju na jeffektivnost' procedury poiska shumopodobnogo signala po zaderzhke na fone shuma i garmonicheskoj pomehi (Efficiency of the spread spectrum signal searching procedure in case of continuous wave interference and quantization effect) // Tsifrovaya obrabotka signalov (Digital signal processing). 2020. no 2. pp. 41–45.

8. Kuzmin E.V., Zograf F.G. Vliyanie garmonicheskoi pomekhi na effektivnost' protsedury besporogovogo poiska shumopodobnogo signala po vremeni zapazdyvaniya s perekhodom v chastotnuyu oblast' opredeleniya (Influence of continuous wave interference on the efficiency of the non-threshold search procedure for a noise-like signal by delay time with transition to the frequency domain) // Radiotekhnika i elektronika (Radioengineering & Electronics). 2022. vol. 67. no 8. pp. 774–781.

9. Bakit'ko R.V., Pol'shhikov V.P., Shilov A.I., Hackelevich Ja.D., Boldenkov E.N. Ispol'zovanie vesovyh funkcij dlja predvaritel'noj obrabotki shumopodobnyh signalov pri nalichii sil'nyh interferencionnyh pomeh (Using weighting functions for preprocessing spread spectrum signals in the presence of strong interference) // Radiotehnika. 2006. no 6. pp. 13–17.

10. Kuzmin E.V. Povyshenie effektivnosti obrabotki signalov na fone garmonicheskoi pomekhi za schet vybora funktsii predvaritel'nogo vzveshivaniya dlya chastotnogo rezhektora (Increasing the efficiency of the signals processing in case of continuous wave interference by choosing the function of the preliminary weighting for frequency notch) // Tsifrovaya obrabotka signalov (Digital signal processing). 2021. no 4. pp. 16–20.

11. Kuzmin E.V. Pokazateli kachestva algoritma DPF-rezhekcii uzkopolosnoj pomehi pri razlichnyh funkcijah predvaritel'nogo vzveshivanija (Quality indicators of the DFT-based algorithm for narrow-band interference rejection under various functions of the preliminary weighing) // Tsifrovaya obrabotka signalov (Digital signal processing). 2023. no 1. pp. 48–53.

12. Kravchenko V.F., Pustovoit V.I. Novyj klass vesovyh funkcij i ih spektral'nye svojstva (A new class of weight functions and their spectral properties) // Doklady akademii nayk (Reports of the academy of sciences). 2002. vol. 386. no 1. pp. 38–42.

13. Okonnye funkcii dlja garmonicheskogo analiza signalov (Window functions for harmonic analysis of signal) / V.P. Dvorkovich, A.V. Dvorkovich. M.: Tehnosfera, 2016. 208 p.

14. Kuzmin E.V. Analiz chastotnyh harakteristik procedur kvadraturnoj korreljacionnoj obrabotki kompleksnyh signalov (Analysis of the frequency responses of the quadrature correlation processing of complex signals) // Tsifrovaya obrabotka signalov (Digital signal processing). 2020. no 4. pp. 13–20.

15. Matematicheskie metody statistiki (Mathematical methods of statistics) / H. Cramer. M.: Mir. 1975. 648 p.

16. Radiotehnicheskie cepi i signaly: ucheb. dlja vuzov. 3-e izd. pererab. i dop. (Radio engineering circuits and signals: textbook for universities. 3d ed. rev. and add.) / S.I. Baskakov. M.: Vysshaja shkola. 2000. 462 p.

17. Teorija slozhnyh signalov (Complex signal theory) / L.E. Varakin. M.: Sovetskoe radio. 1970. 376 p.


Simulation modeling of test and training datasets of a neural network sonar detector
Syuzev V.V.1,
Sotnikov A.A.1, e-mail: sotnikov@bmstu.ru
Baranova S.N.2, e-mail: baranova.sv.n@gmail.com
1IU6 Computer systems and networks Bauman Moscow State Technical University, Russia, Moscow
2Ryazan State Radio Engineering University (RSREU), Russia, Ryazan

Keywords: simulation modeling, neural networks, spectrogram, bit plane, binary representation.

Abstract
In the process of developing on-board computing systems of modern underwater complexes, one of the most urgent tasks is the detection and recognition of inhomogeneities against the background of interference, the water surface and the bottom relief. The relatively low rate of the hydroacoustic data flow (no more than 100 Mbit/s before the primary processing, carried out in the form of digital heterodination, and no more than 10 Mbit/s after) makes it attractive to solve the problem of sonar detection and pattern recognition using the currently well-developed neural network technology [1].

The method developed by the authors is aimed at forming training datasets presented in the form of sonar images for intelligent sonar. Hydroacoustic images are formed as a result of calculating the spectrogram of an additive signal obtained by adding discrete elementary hydroacoustic signals obtained as a result of simulation over time. As a result of preprocessing in the spectrogram, the target is separated from the noise and echoes of other objects. The spectrogram is a matrix of numbers corresponding to the intensity of the reflected signal, the rows of the matrix correspond to the distance to the object, the columns correspond to the frequency of the signal.

Reference versions of spectrograms can be obtained by one of the resource-intensive methods (full-scale experiment or signal simulation), and variations of spectrograms for a neural network associated with changes, for example, in a number of target parameters can be obtained directly by modifying the reference image with its preliminary division into bit planes.

As a result of the study, it was concluded that the spectrogram and its binary representation are suitable for use as training kits for intelligent sonar, as well as the possibility of significantly reducing the time of formation of training images due to the direct synthesis of spectrograms based on their reference versions, taking into account changes in individual parameters of the sonar environment.

References
1. Kim T.A., Rozanov I.A., Areshhenkov D.A., Sotnikov A.A., Analiz oblastej primeneniya texnologii iskusstvennogo intellekta v sistemax imitacionnogo modelirovaniya mnogomernyx signalov i informacionno-upravlyayushhix sistemax realnogo vremeni (Analysis of applications of artificial intelligence technology in multidimensional signal simulation systems and real-time information control systems). Texnologii inzhenernyx i informacionnyx sistem. Moskovskoe NTO radiotexniki, elektroniki i svyazi im. A.S. Popova, 2022, No 3, pp. 85-91

2. P. Etter, Underwater Acoustic Modelling and Simulation. CRC Press, 2013, ZSCC: NoCitationData[s0], ISBN: 978-1-4822-9514-6. DOI: 10.1201/b13906. [Online]. Available: https://doi.org/10.1201/b13906.

3. Kim T.A., Areshhenkov D.A., Sotnikov A.A. Issledovanie sredstv imitacionnogo modelirovaniya mnogomernyx signalov v sistemax iskusstvennogo intellekta realnogo vremeni (Research of simulation tools for multidimensional signals in real-time artificial intelligence systems) // Sovremennye naukoemkie texnologii. 2022. ¹ 10-2. pp. 218-225

4. Olshevskij V.V. Statisticheskie metody v gidrolokacii (Statistical methods in sonar). L.: Sudostroenie, 1983. 280 p.

5. Bykov V.V. Cifrovoe modelirovanie v statisticheskoj radiotexnike (Digital modeling in statistical radio engineering). M.: Sov. radio, 1971. 275 p.

6. Rozanov I.A., Sotnikov A.A. Metod adaptivnogo imitacionnogo modelirovaniya mnogomernyx signalov v informacionno-upravlyayushhix sistemax realnogo vremeni (The method of adaptive simulation of multidimensional signals in real-time information and control systems). Sovremennaya nauka: aktualnye problemy teorii i praktiki. Seriya «Estestvennye i texnicheskie nauki», 2022, No 10-2, pp.87-92

7. Syuzev V.V., Kim T.A., Askerova N.A. Sotnikov A.A. Obobshhennyj mnogokriterialnyj metod modelirovaniya mnogomernyx signalov v informacionno-upravlyayushhix sistemax realnogo vremeni (Generalized multi-criteria method for modeling multidimensional signals in real-time information and control systems). Fundamentalnye, poiskovye, prikladnye issledovaniya i innovacionnye proekty. Nacionalnaya nauchno-prakticheskaya konferenciya. RTU MIREA. 2022

8. Kim T.A., Sotnikov A.A. Imitacionnoe modelirovanie radiolokacionnyx pomex spektralno-korrelyacionnymi metodami sredstvami modulnoj platformy PXI (Simulation of radar interference by spectral correlation methods using the PXI modular platform). Cifrovaya obrabotka signalov i eyo primenenie (DSPA-2022) 24-ya Mezhdunarodnaya konferenciya. Vypusk: XXIV. M.: Rossijskoe nauchno-texnicheskoe obshhestvo radiotexniki, e`lektroniki i svyazi im. A.S. Popova, 2022. pp. 225-230.

9. Rozanov I.A., Sotnikov A.A. Metod adaptivnogo imitacionnogo modelirovaniya mnogomernyx signalov v informacionno-upravlyayushhix sistemax realnogo vremeni (The method of adaptive simulation of multidimensional signals in real-time information and control systems) // Sovremennaya nauka: aktualnye problemy teorii i praktiki. Seriya: Estestvennye i texnicheskie nauki. 2022. ¹ 10-2. pp. 87-92.

10. Krutyakov M.A., Rozanov I.A., Sotnikov A.A. Imitacionnoe modelirovanie signala gidroakusticheskoj granichnoj reverberacii v bazise Xartli (Simulation of the signal of hydroacoustic boundary reverberation in the Hartley basis). Sovremennaya nauka: aktualnye problemy teorii i praktiki. Seriya: Estestvennye i Texnicheskie Nauki. 2019. No1. pp. 60-66.

11. Sungatullin E.N., Ustimenko V.M. Formirovanie shirokopolosnyx pomex (Formation of broadband interference). Aktualnye problemy infotelekommunikacij v nauke i obrazovanii. 2016. pp. 210-213.

12. H. Peyvandi, M. Farrokhrooz, H. Roufarshbaf, and S.-J. Park, ‘SONAR Systems and Underwater Signal Processing: Classic and Modern Approaches’, Sonar Systems. InTech, Sep. 12, 2011. doi: 10.5772/17505.

13. J.E. Thorner. «Approaches to sonar beamforming», IEEE Technical Conference on Southern Tier, Binghamton, NY, USA, 1990, pp. 69-78, doi: 10.1109/STIER.1990.324633.

14. Kim T.A., Rozanov I.A., Sotnikov A.A. Metod korrelyacionnoj obrabotki gidrolokacionnyx chastotno-manipulirovannyx signalov. Sovremennaya nauka: aktualnye problemy teorii i praktiki (The method of correlation processing of sonar frequency-manipulated signals). Seriya: Estestvennye i Texnicheskie Nauki. 2022. No 9. pp. 60-66.

15. Ponomareva O.V., Ponomarev A.V., Ponomareva N.V. Dvumernye bystrye preobrazovaniya Fure s variruemymi parametrami (Two-dimensional fast Fourier transforms with variable parameters). Cifrovaya obrabotka signalov. 2022. No 3. pp. 3-13.

16. Ortogonalnoe kodirovanie binarnyx izobrazhenij (Orthogonal encoding of binary images) / B.V. Kostrov, N.N. Grinchenko, S.N. Baranova, E.A. Trushina, A.A. Vyugina. Vestnik YaVVU PVO. 2023. No 2. pp. 82-87.

17. Kostrov B.V., Grinchenko N.N., Vyugina A.A., Baranova S.N. Parallelnye vychisleniya v zadachax vosstanovleniya iskazhennyx izobrazhenij v prostranstvenno-spektralnoj forme (Parallel computations in problems of reconstruction of distorted images in spatio-spectral form). Trudy Instituta sistemnogo programmirovaniya RAN, tom 35, vyp. 2, 2023, 157-168 DOI: 10.15514/ISPRAS-2023-35(2)-11.

18. Matematicheskaya model processa peredachi izobrazhenij na osnove bitovyx ploskostej (A mathematical model of the image transmission process based on bit planes) / N.N. Grinchenko, S.N. Baranova, M.A. Lobachev [i dr.]. Vestnik Koncerna VKO «Almaz-Antej». 2023. No 1. pp. 82-89. URL: https://doi org/10.38013/2542-0542-2023-1-82-89

19. Binarizaciya tekstovyx izobrazhenij na osnove texnologii bitovyx ploskostej (Binarization of text images based on bit-plane technology) / B.V. Kostrov, N.N. Grinchenko, S.N. Baranova, E.A. Trushina, A.A. Vyugina. Vestnik YaVVU PVO 2023. No 2. pp.75-81.

 

 

Probabilistic assessment of recognition of radar signals recorded when observing human movements
Ashryapov M.I., e-mail: 3754248124@mail.ru
Moscow Aviation Institute (National Research University), Russia, Moscow

Keywords: radar sensor, bio-radiolocation, recognition of radar signals, correlation processing, scalable signal.

Abstract
The article is devoted to the development of a new method for recognizing human gestures for remote and remote control of household electronic devices or wheeled rovers, in order to facilitate an intuitive interaction interface. For this purpose, an ultra-wideband radar sensor (UWB) with high spatial resolution, operating at a frequency of 6.5 GHz, has been developed, which is capable of recording even the smallest amplitudes of movements, even the amplitude of breathing. The principle of operation of such a radar reflects the essence of measuring the amplitudes of two quadrature channels when measuring the distance to an object, by changing the phase of the signal. Where each quadrature channel generates a voltage amplitude depending on the phase change function. Thus, it becomes possible to select gestures.

The proposed method for processing the input radar signal is based on correlation processing. The signal template obtained by observing recognizable gestures is used as a standard.

The complexity of processing such signals lies in the fact that the recorded signals may differ from the standard under the influence of the speed of gestures, viewing angle, and distance of the object.

The solution to this problem is the use of several standards for recognition (multi-scale analysis), this approach is close to the principle of wavelet transform.

To confirm the effectiveness of the method, the results of experiments in which the input signal differs in duration within ±25% of the standard are demonstrated. The experiment involved observing ten repetitions of gestures in one of six recognition classes. The result of the experiment is an increase in the probability of recognition in comparison with classical analysis using a single template. The recognition probability assessment was carried out according to the empirical law of normal distribution.

References
1. Kolomytsev A.S., Verdiev O.R. Gesture recognition in video. StudNet. 2022. No. 7. pp. 7774-7800.

2. Alekseev I.V., Mitrokhin M.A. Modern methods of speech recognition for building a voice interface for controlling special-purpose systems. News from universities. Volga region. Technical science. 2019. No. 2 (50). pp. 3-10.

3. Immoreev I.Ya., Fesenko M.V. Pulse ultra-wideband sensor. Patent for invention RU 2369323 C1, 10.10.2009. Application No. 2008106039/14 dated 02/20/2008. [Patent].

4. Immoreev I.Ya., Samkov S.V., Pavlov S.N. Pulse ultra-wideband sensor. Patent for invention RU 2321341 C1, 04/10/2008. Application No. 2006135225/14 dated 10/06/2006. [Patent].

5. Immoreev I.Ya. Ultra-wideband short-range radars for detecting and determining the parameters of living objects. Bulletin of the Moscow Aviation Institute. 2011. T. 18. No. 1. P. 18.

6. Ashryapov M.I. Radar recognition of Doppler signals using wavelet-correlation analysis. Proceedings of VNIIEM. 2022. T. 188. No. 3. pp. 18-24.

7. Ashryapov M.I. Methods for recognizing micro-Doppler portraits based on correlation wavelet analysis. Journal of Siberian Federal University. Engineering & Technologies. Journal of the Siberian Federal University. Technics and techology. 2022. 15(6), pp. 759-767. DOI:10.17516/1999-494X-0434.

8. Mitsel A.A. Applied mathematical statistics. Practical work. Tomsk: TUSUR. 2015. 81 p.

9. Kobzar A.I. Applied mathematical statistics (Modern methods in mathematics), 2006.

10. Iglin S.P. Probability theory and mathematical statistics based on MATLAB. Kharkov, 2006. 612 p.


Permutation decoding with a system of adapted alternative solutions
A.A. Gladkikh1, e-mail: a_gladkikh@mail.ru
A.A. Ovinnikov2, e-mail: ovinnikov.a.a@tor.rsreu.ru
N.A. Pchelin3, e-mail: pna3@yandex.ru
A.A. Brynza1, e-mail: abrynza73@gmail.com
1Ulyanovsk State Technical University, Russia, Ulyanovsk
2Ryazan State Radio Engineering University (RSREU), Russia, Ryazan
3Federal Research-and-Production Center Joint-Stock Company ‘Research-and-Production Association ‘Mars’, Russia, Ulyanovsk

Keywords: permutation decoding, procedure for searching for equivalent codes, cognitive maps of the decoder, combined orbit, local orbit, decoder's cognitive map.

Abstract
The expediency of using the permutation decoding (PD) method in practice is presented in a number of papers, where the procedure for searching for equivalent codes (EC) offers a unique opportunity to replace matrix calculations of various permutations of symbols, accepted code vectors, with a list of ready-made solutions calculated a priori and fixed in the cognitive maps of the decoder. The problem arises of organizing a rational search for the required data in the system of lists of cognitive decoder cards. The paper describes new properties of permutations of character numerators of binary code combinations, which may be of interest to specialists working in the field of abstract algebra and combinatorics. The concepts of the combined orbit (CO) of permutations are clarified and the term of the local orbit (LO) of permutations is introduced. It is shown that combining these properties with the features of constructing binary group codes makes it possible to organize more advanced algorithms for their processing in the PD system by introducing a list of alternative solutions into the decoder's cognitive map. The aim of the work is to develop and discuss the general principles of drawing up cognitive maps of block redundant codes of various lengths.


References
1. Gladkikh A.A., Ovinnikov A.A., Tamrazyan G.M. Mathematical model of cognitive permutation decoder / Cifrovaya obrabotka signalov. – 2019. – no 1. – pp.14-19. (in Russian).

2. W.W. Peterson, E.J. Weldon, Jr. Error-correction codes. MIT Press, Cambridge, Mass., 1972. (in Russian).

3. Gladkikh A.A., Klimov R.V., Chilihin N. Y., Methods of efficient decoding of redundant codes and their modern applications. – Ulyanovsk: USTU, 2016. (in Russian)

4. R. H Morelos-Zaragosa. The Art of Error Correcting Coding, John Wiley & Sons, Ltd Baffins Lane, Chichester, England, 2002. (in Russian).

5. B. Sclar. Digital communications. Fundamentals and Applications. Prentice Hall, 2003 (in Russian).

6. Gladkikh A.A., Namestnikov S.M., Pchelin N.A. Efficient permutation decoding of binary block redundant codes / Automation of management processes. – no. 1 (47), 2017, pp. 67 – 74. (in Russian).

7. Properties of cyclic structures in the permutation decoding system of redundant codes / Babanov N.Y., Gladkikh A.A., Namestnikov S.M., Shakhtanov S.V. // Automation of management processes. 2020. no. 2 (60). pp. 82–89. (in Russian).

8. Gladkikh A.A., Namestnikov S.M., Novoselov A.V., Tolikina M.Y., Al-Merci A.S.A. Evaluation of the effectiveness of data protection against errors based on Bayesian inference in the system of iterative transformations // Automation of management processes. 2022. no. 4 (70). pp. 120–130. (in Russian).

9. Novoselov A.V., Shakhtanov S.V., Al-Merci A.S.A., Tolikina M.Y. Evaluation of criteria for the effectiveness of error protection based on permutation decoding // Automation of management processes. 2022. no. 3 (69). pp. 27–34. (in Russian).

10. Gladkikh A.A., Ganin D.V., Pchelin N.A., Shakhtanov S.V., Ochepovsky A.V. Coding methods and permutation decoding in the systems for network processing of data // International Journal of Control and Automation. 2020. Vol. 13. no 1. pp. 93–100.

11. Evaluation of the statistical characteristics of the permutation decoder by its software implementation / A.L.Kh. Attabi, À.À. Brynza, D.V. Ganin, À.À. Nichunaev, A.V. Novoselov // Automation of management processes. 2023. no. 2 (72). pp. 91–98.


Introduction to the design and analysis of digital filters in the SimInTech environment
V.V. Vityazev, e-mail: vityazev.v.v@rsreu.ru
V.A. Volchenkov, e-mail: volchenkov.v.a@tor.rsreu.ru
A.A. Ovinnikov, e-mail: ovinnikov.a.a@tor.rsreu.ru
E.A. Likhobabin, e-mail: info@labsphera.ru
The Ryazan State Radio Engineering University (RSREU), Russia, Ryazan
Laboratory Sphere LLC, Russia, Ryazan


Keywords: digital signal processing, digital filtering, digital filters, FIR filters, IIR filters, SimInTech.

Abstract
This article describes an application for the design and analysis of digital filters developed for the SimInTech modeling environment of 3V-Services LLC. The filter design application was created at Laboratory Sphere LLC (Ryazan) with the participation of employees of the Department of Telecommunications and Fundamentals of Radio Engineering of the Ryazan State Radio Engineering University named after V.F. Utkin.

This application allows you to design filters with finite impulse response (FIR) and infinite impulse response (IIR), build all the necessary characteristics: magnitude response, phase response, group delay response, phase delay, impulse response, step response, pole/zero plot. It is possible to display from 1 to 6 characteristics on the screen at the same time.

The article also provides a detailed description of the parameter settings panel for filter calculation.

The following design methods are available for IIR filters: Butterworth, Chebyshev (type 1), Chebyshev (type 2), and elliptical. Methods for FIR filters: Equiripple and Window: Rectangular, Bartlett, Hamming, Hann, Blackman, Chebyshev, Kaiser.

There is also an input form “Order value”, in which you can enter a fixed value of the order of the calculated filter or select the “Minimum” parameter, which will allow you to calculate a filter with a minimum order, based on the specified requirements. For IIR filters, it is also possible to use partitioning to move from a direct form to a cascade (sequential) form.

References
1. The official website of Laboratory Sphere LLC: [website]. URL: https://labsphera.ru/.

2. SimInTech dynamic modeling environment: [website]. URL: https://simintech.ru/.

3. Digital signal processing. Textbook for universities / V.V. Vityazev, V.A. Volchenkov, A.A. Ovinnikov, etc. – M.: Goryachaya Liniya-Telekom, 2023. – 188 p.


 

 

 

 

 

 

 

 

If you have any question please write: info@dspa.ru