Digital Signal Processing |
Russian |
Improved design of pulse-shaping FIR filters for digital communication systems Abstract 2. Farhang-Boroujeny B. A square-root Nyquist (M) filter design for digital communication systems// IEEE Trans on SP, 2008, vol. 56, no. 5, pp. 2127-2132. 3. Ashrafi A. Optimized linear phase square-root Nyquist FIR filters for CDMA IS-95 and UMTS standards// Signal Processing, 2013, vol. 93, no. 4, pp. 866-873. 4. Traverso S. A family of square-root Nyquist filter with low group delay and high stopband attenuation// IEEE Commun. Letters, 2016, vol. 20, no. 6, pp. 1136-1139. 5. Xiao R., Lei Q., Guo X., Du W., Zhao Y. A design of two sub-stage square-root Nyquist matched filter// IEEE Access, 2018, vol. 6, may, pp. 23292-23302. 6. Mingazin A. T. Design quantized pulse-shaping FIR filters for digital communication system// Digital Signal processing. Russian Scientific and Technical Journal, 2021, no. 4, pp. 3-15. 7. Mingazin A. T. Weighted Chebyshev approximation in design of pulse-shaping FIR filters for digital communication system// Digital Signal processing. Russian Scientific and Technical Journal, 2022, no. 2, pp. 3-11.
Keywords: adaptive nonlinear filtering, polynomial filters, discrete Volterra series. It is shown that for nonlinear filters, the range of the adaptation parameters of gradient algorithms narrows compared to the linear case and is determined by high-order correlation moments. To speed up the convergence rate of gradient adaptation algorithms for processes with a symmetric probability distribution density, instead of carrying out a time-consuming orthogonalization operation, an algorithm based on separate adaptation of even and odd nonlinear components of the filter is proposed. This approach is considered using the example of a third-order nonlinear filter, for which estimates of the permissible limits of the adaptation parameters were obtained. In order to equalize the rate of convergence of individual nonlinear components of the filter, a sequential adaptation algorithm is proposed, based on performing iterations in the direction of increasing the order of nonlinearity of the filter components. The convergence of such an algorithm is proven and estimates for the choice of its parameters are obtained. It is shown that, along with increasing the speed of convergence, the sequential adaptation algorithm at the same time does not guarantee convergence to the optimal point. To achieve the required accuracy without a significant loss of adaptation speed, a combined scheme is proposed, based on the joint use of sequential and parallel adaptation algorithms, using the latter to refine the current vector of filter coefficients. Another possible solution is to add additional feedback to the sequential circuit, the periodic closure of which leads to a decrease in the systematic adaptation error. Increasing and leveling the speed of convergence of the adaptation process can be achieved through the use of Newton-type algorithms (recursive least squares algorithms). A recursive algorithm for adapting polynomial filters with exponential weighting is proposed, which, along with increasing the convergence rate, ensures smoothing of random fluctuations when approaching the optimal point, as well as equalization of the convergence rate relative to the nonlinear components of the filter. 2. Widrow B., uel D. Stearns S. D. Adaptive signal processing. Prentice-Hall, 1985. 474 p. 3. Haykin S. Adaptive filter theory. NJ: Prentice-Hall, 1991. 936 p. 4. Dzhigan V.I. Adaptive signal filtering: theory and algorithms. M.: Tekhnosphere, 2013. 528 p. 5. Doyle III F.J., Pearson R.K., Ogunnaike B.A. Identification and control using Volterra models. London: Springer-Verlag, 2002. 318 p. 6. Hansler E., Schmidt G. Acoustic echo and noise control: A practical approach. Hoboken, NJ: Wiley, 2004. 472 p. 7. Menshikov B.N., Priorov A.L. Nonlinear echo compensation based on an adaptive polynomial Volterra filter with a dynamically tunable structure // Digital signal processing. 2006. No. 3. P. 20-25. 8. Stepanov O.A., Neural network algorithms in the problem of nonlinear estimation. Interrelation with the Bayesian approach // Navigation and motion control: materials of reports of the XI conference of young scientists. 2009. pp. 39-65. 9. Mitra S. K., Sicuranza G. L. Nonlinear image processing. Academic Press, 2001. 455 p. 10. Mathews V. J., Sicuranza G. L. Polynomial signal processing. New York: John Wiley & Songs Interscience publication, 2000. 472 p. 11. Shcherbakov M.A., Steshenko V.B., Gubanov D.A. Digital polynomial filtering in real time: algorithms and implementation methods on a modern element base // Digital signal processing. 2000. No. 1. P. 19-26. 12. Mathews V. J. Adaptive polynomial filters // IEEE Signal Processing Magazine. 1991. No. 7. P. 10-26. 13. Pupkov K.A., Kapalin V.I., Yushchenko A.S. Functional series in the theory of nonlinear systems.. M.: Nauka. 1976. 448 p. 14. Shcherbakov M. A. A Recursive Algorithm of Digital Polynomial Filtering. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), March 11-13, 2020, Moscow, Russia, 4 pages. DOI: 10.1109/MWENT47943.2020.9067458. 15. Shcherbakov M.A. Construction of optimal nonlinear filters by the method of successive approximations // Analytical mechanics, stability and control: Proceedings of the X International Chetaev Conference. T. 3. Section 3. Control. Part II. Kazan, June 12-16, 2012 – Kazan: Kazan Publishing House. State Tech. Univ., 2012. P. 472-482. 16. Lancaster P. Theory of matrices. M.: Nauka, 1978. 280 p. 17. Pottmann M. Application of general multi-model approach for identification of highly nonlinear processes – a case study / M. Pottmann, H. Unbehauen, D.E. Seborg // Int. Journal of Control. 1993. V. 57. No. 1. P. 97-120. 18. Marmarelis V. Marmarelis M. Analysis of physiological systems. The White-Noise Approach. New York: Plenum Press. 1978. 488 p.
Optimization of signal detection systems with non-recursive rejection filters
Abstract The aim of the work is to optimize the weight coefficients of non–recursive rejection filters depending on the correlation properties of passive interference according to the probability criterion. Expressions are obtained for the probabilistic characteristics of detection systems with coherent interference rejection and subsequent coherent or non-coherent accumulation of rejection residues, respectively. These expressions establish a functional relationship between the probability of correct detection averaged over the Doppler phase of the signal and the correlation parameters of the passive interference and the characteristics of the detection system. The criteria for the optimization of the weight vector of the rejection filter are given. These criteria make it possible to establish the relationship of the optimal weight vector with the interference parameters based on nonlinear programming methods. A quasi-Newtonian iterative procedure for finding the optimal vector is given. In order to achieve a unimodal extremum, restrictions on the frequency response of the rejection filter are introduced. Numerical results of optimization of a system with coherent rejection and subsequent incoherent equilibrium accumulation according to a probabilistic criterion are considered. Their comparison with similar results of optimization of the rejection filter according to the energy criterion is carried out. The proposed method of optimization of detection systems by probabilistic criterion makes it possible to obtain significant gains in the efficiency of signal detection compared to optimization by energy criterion and to realize the marginal efficiency for the class of systems under consideration. 2. Richards M.A., Scheer J.A., Holm W.A. (Eds.). Principles of Modern Radar: Basic Principles. New York: SciTech Publishing, IET, Edison. 2010. – 924 p. 3. Melvin W. L., Scheer J.A. (Eds.). Principles of Modern Radar: Advanced Techniques. New York: SciTech Publishing, IET, Edison, 2013. – 846 p. 4. Radar Handbook / Ed. by M.I. Skolnik. 3rd ed. McGraw–Hill, 2008. 1352 p. 5. Popov D.I. Adaptacija nerekursivnyh rezhektornyh fil'trov // Izvestija vuzov. Ra-diojelektronika. 2009. vol. 52. no. 4. P. 46-55. (in Russian). 6. Popov D.I. Autocompensation of the Doppler phase of clutter // Cifrovaja obrabotka signalov. 2009. no 2. pp. 30–33. (in Russian). 7. Popov D.I. Avtokompensacija doplerovskoj fazy mnogochastotnyh passivnyh pomeh // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2018. no. 65. pp. 32–37. 8. Popov D.I. Adaptive suppression of clutter // Cifrovaja obrabotka signalov. 2014. no. 4. pp. 32-37. (in Russian). 9. Popov D.I. Adaptivnije regektornjie filtrij kaskadnogo tipa // Cifrovaya obrabotka signalov. 2016. no. 2. pp. 53-56. (in Russian). 10. Popov D.I. Adaptive notch filter with real weights // Cifrovaya obrabotka signalov. 2017. no. 1. pp. 22-26. (in Russian). 11. Popov D.I. Optimizacja nerekursivnjih regektornjie filtrov s chastichnoj adaptaciej // Cifrovaya obrabotka signalov. 2018. no. 1. pp. 28-32. (in Russian). 12. Popov D.I. Optimizacija rezhektornyh fil'trov po verojatnostnomu kriteriju // Cifrovaja obrabotka signalov. 2021. no. 1. P. 55-58. (in Russian). 13. Kuz'min S.Z. Cifrovaja radiolokacija. Vvedenie v teoriju (Digital radar. Introduction to Theory). Kiev: KViC, 2000. 428 p. (in Russian). 14. Cifrovaja obrabotka signalov v mnogofunkcional'nyh radiolokatorah. Metody. Algoritmy. Apparatura: monografija (Digital signal processing in multifunctional radars. Methods. Algorithms. Equipment: monograph) / pod red. G.V. Zajceva. M.: Radiotehnika, 2015. 376 p. (in Russian). 15. Klochko V.K., Kuznecov V.P., Levitin A.V. i dr. Algoritmy opredelenija koordi-nat dvizhushhihsja celej na baze mnogokanal'noj doplerovskoj RLS // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2015. no. 53. pp. 3-10. (in Russian). 16. Klochko V.K., Kuznecov V.P., Vu Ba Hung. Ocenivanie parametrov radiosignalov ot podvizhnyh malovysotnyh ob#ektov // Vestnik Rjazanskogo gosudarstvennogo radioteh-nicheskogo universiteta. 2022. no. ¹ 80. pp. 12-23. (in Russian). 17. Popov D.I., Belokrylov A.G. Sintez obnaruzhitelej-izmeritelej mnogochastotnyh signalov // Izvestija vuzov. Radiojelektronika. 2001. v. 44. no. 11. pp. 33-40. (in Russian). 18. Middlton D. Vvedenie v statisticheskuju teoriju svjazi (Introduction to the statistical theory of communication): v 2 t. per. s angl. M.: Sov. Radio, 1961. v. 1. 782 p.; 1962. v. 2. 832 p. (in Russian).
Abstract References 2. Vasilenko, G.I.; Taratorin, A., Image Restoration, Radio and Communications, Moscow (1986). 3. Tychonoff, A. N.;Arsenin, V. Y., Solution of Ill-posed Problems, Winston & Sons, Washington (1977). 4. Goryachkin, O., V., Methods of blind signal processing and their applications in radio engineering and communication systems, Radio and Communications, Moscow (2003). 5. Hua, Y., “Fast maximum likelihood for blind identification of blind identification of multiple fir channels,” IEEE Transactions on Signal Processing 44, 661–672 (Mar. 1996). 6. Katkovnik, V.; Paliy, D., “Frequency domain blind deconvolution in multiframe imaging using anisotropic spatially-adaptive denoising,” Proceedings of EUSIPCO (2006). 7. H. Pozidis and A. P. Petropulu, “Cross-corelation based multichannel blind equalization,” Proceedings of 8th IEEE SSAP (1996). 8. Zhang, Haichao, David Wipf, and Yanning Zhang. " Reconstruction of single image from multiple blurry measured images " IEEE transactions on pattern analysis and machine intelligence 36.8 (2014): 1628-1643. 9. Lin, Tsung-Ching, et al. "Multi-observation blind deconvolution with an adaptive sparse prior." IEEE Transactions on Image Processing 27.6 (2018): 2762-2776. 10. K.A. Postnov Lectures on general astrophysics for students / http://www.astronet.ru/db/msg/1170612/index.html 11. W. Niu, K. Zhang, W. Luo and Y. Zhong, "Blind Motion Deblurring Super-Resolution: When Dynamic Spatio-Temporal Learning Meets Static Image Understanding," in IEEE Transactions on Image Processing, vol. 30, pp. 7101-7111, 2021, doi: 10.1109/TIP.2021.3101402. 12. Goriachkin O.V., Erina E.I. Given Correlation Manifolds and their Application in Blind Channel Identification // The Open Statistics and Probability Journal, 2009, vol. 1, 55-64 pp. 13. P. Zhu, C. Xie and Z. Gao, "Multi-Frame Blind Restoration for Image of Space Target With FRC and Branch-Attention," in IEEE Access, vol. 8, pp. 183813-183825, 2020, doi: 10.1109/ACCESS.2020.3029356. 14. P. Zhu, C. Xie and Z. Gao, "Multi-Frame Blind Restoration for Image of Space Target With FRC and Branch-Attention," in IEEE Access, vol. 8, pp. 183813-183825, 2020, doi: 10.1109/ACCESS.2020.3029356. 15. Savvin SV, Sirota AA. Algorithms for multi-frame image super-resolution under applicative noise based on deep neural networks. Computer Optics 2022; 46(1): 130-138. DOI: 10.18287/2412-6179-CO-904. 16. Nikonorov, A.V. Reconstruction of images in diffraction-optical systems based on convolutional neural networks and reverse convolution / A.V. Nikonorov, M.V. Petrov, S.A. Bibikov, V.V. Kutikova, A.A. Morozov, N.L. Kazansky // Computer optics. – 2017. – Vol. 41, No. 6. – pp. 875-887. – DOI: 10.18287/2412-6179-2017-41-6-875-887.
Abstract References 2. K. Ghartey , A. Papandreou-Suppappola , and D. Cochran , On the Use of Matching Pursuit Time-Frequency Techniques for Multiple-Channel Detection, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 5, 3201–3204, May 2001. 3. Papandreou-Suppappola, Antonia, Applications in time-frequency signal processing (Electrical engineering and applied signal processing series), New York, 2002, 397 ð. 4. Klochko V. K., Vu B. H. Time-frequency signal processing in Doppler radios // Digital signal processing. 2023. No. 2. pp. 15-21. 5. Klochko V. K., Kuznetsov V. P., Vu B. H. Estimation of parameters of radio signals from mobile low-altitude objects // Bulletin of the Ryazan State Radio Engineering University. 2022. Issue 80. pp. 12-23. 6. Bakulev P. A. Radar systems. Textbook for universities. 3rd edition, revised. and additional M.: Radio Engineering, 2015. 440 p. 7. Klochko V. K., Vu B. H.. Detection of mobile sources by a radio receiver system // Digital signal processing. 2022. ¹ 4. Pp. 50-55.
Neural network Earth object identification based of hyperspectral imaging systems and knowledge about their video information path The article analyzes video information path in aerospace hyperspectral imaging systems of Earth and describes ways to usage this knowledge for improve neural network object identification performance. The video information path is represented as multiply of two functions, one of which depends only on solar radiation wavelength, and the other on coordinates of scanned point and solar radiation wavelength. Based on video information path representation some important practical tasks were generated: 1) estimation of spectral reflectance coefficient; 2) clarification of atmospheric transmission coefficients; 3) clarification of parameters of video information path during flight of satellite. This study focuses on solving the first task. An analyze of radiometric quality of the hyperspectral sensor was performed. The issue of reducing the redundancy of hyperspectral output data for neural network processing is considered. For experimental research, data from the aviation system «AVIRIS» and the Russian space system «Resurs-P» are used. Some experiments are presented for demonstrating the effect of reducing data redundancy with principle component method. Quality metrics of neural network object identification were obtained. 2. H. Kaufmann et al., "EnMAP A Hyperspectral Sensor for Environmental Mapping and Analysis," 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 2006, pp. 1617-1619. 3. Akhmetianov V. R.. Nikolenko A. A.. Terentyeva V. V. Razvitiye kosmicheskoy giperspektralnoy apparatury za rubezhom // mater. nauch.-tekhn. konf. «Giperspektralnyye pribory i tekhnologii». M.: OAO «Krasnogorskiy zavod im. S.A.Zvereva». 2013. pp. 41-42. 4. Eremeev V.V.. Egoshkin N.A.. Makarenkov A.A.. Moskvitin A.E.. Ushenkin V.A. Problemnyye voprosy obrabotki dannykh ot kosmicheskikh sistem giperspektralnoy i radiolokatsionnoy syemki Zemli // Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2017. ¹60. pp. 54-64. 5. Arkhipov S. A.. Lyakhov A. Yu.. Tarasov A. P. Raboty OAO «Krasnogorskiy zavod im. S.A. Zvereva» po sozdaniyu giperspektralnykh priborov distantsionnogo zondirovaniya // mater. nauchn.-tekhn. konf. «Giperspektralnyye pribory i tekhnologii». M.: OAO «Krasnogorskiy zavod im. S.A. Zvereva». 2013. pp. 25-30. 6. Kirilin A. N.. Akhmetov R. N.. Stratilatov N. R.. Baklanov A. I.. Federov V. M.. Novikov M. V. Kosmicheskiy apparat «Resurs-P» // Geomatika. 2010. ¹ 4. pp. 23-26. 7. Antonushkina S. V.. Eremeev V. V.. Makarenkov A. A.. Moskvitin A. E. Osobennosti analiza i obrabotki informatsii ot sistem giperspektralnoy syemki Zemnoy poverkhnosti // Tsifrovaya obrabotka signalov. 2010. ¹ 4. pp. 38-43. 8. Akhmetov R.N.. Vezenov V.I.. Eremeev V.V.. Stratilatov N.R.. Yudakov A.A. Modeli formiro-vaniya i nekotoryye algoritmy obrabotki giperspektralnykh izobrazheniy // Issledovaniye Zemli iz kosmosa. 2014. ¹1. pp. 17-28. 9. Uspenskiy A. B.. Rublev A. N. Sovremennoye sostoyaniye i perspektivy sputnikovogo giperspektralnogo atmosfernogo zondirovaniya // Issledovaniye Zemli iz kosmosa. 2013. ¹ 6. pp. 4-15. 10. Grigoryeva O. V. Nablyudeniye degradatsii lesov po dannym giperspektralnogo aero- kosmicheskogo zondirovaniya // Issledovaniye Zemli iz kosmosa. 2014. ¹1. pp. 43-48. 11. Eremeev V.V.. Egoshkin N.A.. Makarenkov A.A.. Ushenkin V.A.. Postylyakov O.V. Uluchsheniye tekhnologiy iskusstvennogo intellekta pri obrabotke materialov nablyudeniya Zemli na osnove sistemnogo analiza skvoznogo informatsionnogo trakta // Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2023. vol.20. ¹6. pp.144-154. 12. Eremeev V.A.. Makarenkov A.A. Ispolzovaniye svertochnykh neyronnykh setey dlya identifikatsii strukturno-odnorodnykh oblastey na kosmicheskikh snimkakh Zemli // Tsifrovaya obrabotka signalov. 2022. ¹3. pp. 45-48. 13. Eremeev V.V.. Eremeev V.A.. Makarenkov A.A. Vydeleniye granits obyektov na giperspektralnykh sputnikovykh snimkakh zemnoy poverkhnosti // Tsifrovaya obrabotka signalov. 2022. ¹3. pp.49-52. 14. Modern technologies of remote sensing data processing / ed. V.V. Eremeev. M.: Fizmatlit. 2015. pp. 460. (in Russian). 15. Craig Rodarmel, Jie Shan, Principal component analysis for hyperspectral image classification / Surveying and Land Information Systems, vol. 62, No. 2, 2002, pp.115-000. 16. Plaza, Antonio & Tilton, James. Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images. International Geoscience and Remote Sensing Symposium (IGARSS). 7.4946-4949. 10.1109/IGARSS.2005. 1526784. 2005. 17. Muhammad Ahmad, Adil Mehmood Khan, Manuel Mazzara, Salvatore Distefano, Mohsin Ali, Muhammad Shahzad Sarfraz. A fast and compact 3-D CNN for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters. 2022. vol.19. pp. 1-5. 18. Marina Sokolova, Guy Lapalme. A systematic analysis of performance measures for classification tasks. Information Processing and Management. 2009. 45(4). pp. 427-437. 19. Schowengerdt R. A., Remote Sensing: Models and Methods for Image Processing, 3rd ed., San Diego, CA: Academic Press, 2006, 558 p.
Recovery of a discrete time signal using an orthogonal polynomials system of a discrete argument 2. Denisenko, A. N. Signals. Teoreticheskaya radiotekhnika. Spravochnoye posobiye. (Theoretical radio engineering. Reference manual). Moscow: Goryachaya liniya-Telekom, 2005. 704 p. 3. Oppenheim A.V., Schafer R.W. Discrete-time signal processing: Third edition. // Pearson Higher Education. 2010. 1108 p. 4. Khan N.A., Ali S. Robust sparse reconstruction of signals with gapped missing samples from multi-sensor recordings // Digital Signal Processing. 2022. vol. 123. 103392. 5. Aceska R., Bouchot J.-L., Li S. Local Sparsity and recovery of fusion frame structured signals // Signal Processing. 2020. vol. 174. 107615. 6. Stankovic L., Stankovic S., Amin M. Missing samples analysis in signals for applications to L-estimation and compressive sensing // Signal Processing. 2014. vol. 94. pp. 401–408. 7. Maymon S. Oppenheim A.V. Sinc interpolation of nonuniform samples // IEEE Transactions on Signal Processing. 2011. vol. 59. no. 10. pp. 4745–4758. 8. Andras I., Dolinsky P., Michaeli L., Saliga J. A Time domain reconstruction method of randomly sampled frequency sparse signal // Measurement. 2018. vol. 127. pp. 68–77. 9. Bilinskis I. Digital Alias-free Signal Processing. // Wiley. 2007. 454 p. 10. Wanga P., Yanga H., Yea Z. 1-bit direction of arrival estimation via improved complex-valued binary iterative hard thresholding // Digital Signal Processing. 2022. vol. 120. 103265. 11. Guoa L.-B., Donga C.-X., Donga Y.-Y., Sunb T., Maoa Y. One-bit LFM signal recovery: a consistency algorithm with one-sided weighted quadratic penalty // Digital Signal Processing. 2022. vol. 127. 103575. 12. Yakimov V.N., Mashkov A.V. Znakovyy algoritm analiza spektra amplitud i vosstanovleniya garmonicheskikh sostavlyayushchikh signalov v usloviyakh prisutstviya nekorrelirovannykh fonovykh shumov (The binary algorithm for the analysis of the spectrum amplitude and recover of harmonic components signals in the presence of uncorrelated background noise) // Nauchnoe priborostroenie (Scientific Instrument Making), St. Petersburg: The Institute for Analytical Instrumentation Russian Academy of Sciences, 2017. vol. 27. no.2. pp. 83–90. 13. Yakimov V.N. Matematicheskoe predstavlenie potokov diskretnogo znakovogo preobrazovaniya nepreryvnykh signalov (A mathematical representation of flows of discrete symbolic transformation of continuous signals) // Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskiye nauki (Bulletin of Samara state technical university. Series: Technical Sciences). Samara, 2000. no. 8. pp. 190-192. 14. Yakimov V.N. Obobshchennaya matematicheskaya model dvukhurovnevogo znakovogo preobrazovaniya (Generalized mathematical model of two-level sign-function transformations) // Tekhnika mashinostroeniya (Equipment of mechanical engineering). Moscow, 2000. no. 4. pp. 72-74. 15. Yakimov V.N. Tsifrovoy kompleksnyy statisticheskiy analiz na osnove znakovogo predstavleniya sluchaynykh protsessov (Digital complex statistical analysis based on sign-function representation of random processes) // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk (Izvestia of Samara scientific center of the Russian academy of sciences). Samara, 2016. vol. 18. no. 4-7. pp. 1346–1353. 16. Choe C.-G., Pak J.-H., Rim .-S. Joint. near-isometry and optimal sparse recovery: nonuniform recovery from multi-sensor measurements // Signal Processing. 2023. vol. 208. 108980. 17. Liu N., Tao R., Wang R., Deng Y., Li N., Zhao S. signal reconstruction from recurrent samples in fractional fourier domain and its application in multichannel SAR // Signal Processing. 2017. vol. 131. pp. 288-299. 18. Wang H., Yang S., Liu Y., Li Q. Compressive sensing reconstruction for rolling bearing vibration signal based on improved iterative soft thresholding algorithm // Measurement. 2023. vol. 210. 112528. 19. Sejdic E., Orovic I., Stankovic S. Compressive sensing meets time-frequency: An overview of recent advances in time-frequency processing of sparse signals // Digital Signal Processing. 2018. vol. 77. pp. 22–35. 20. Tang Q., Jiang Y., Xin J., Liao G., Zhou J. Yang X. A novel method for the recovery of continuous missing data using multivariate variational mode decomposition and fully convolutional networks // Measurement. 2023. vol. 220. 113366. 21. Khan N.A., Ali S. Reconstruction of gapped missing samples based on instantaneous frequency and instantaneous amplitude estimation // Signal Processing. 2022. vol. 193. 108429. 22. Dokuchaev N. On recovery of discrete time signals from their periodic subsequences // Signal Processing. 2019. vol. 162. pp. 180-188. 23. Annaby M.H., Al-Abdi I.A., Abou-Dina M.S., Ghaleb A.F. Regularized sampling reconstruction of signals in the linear canonical transform domain // Signal Processing. 2022. vol. 198. 108569. 24. Yue C., Liang J., Qu B., Han Y., Zhu Y., Crisalle O.D. A Novel multiobjective optimization algorithm for sparse signal reconstruction // Signal Processing. 2020. vol. 167. 107292. 25. Yakimov V.N. (Discrete Time Sequence Reconstruction of a Signal Based on Local Approximation Using a Fourier Series by an Orthogonal System of Trigonometric Functions) // Informatika i Avtomatizatsiya (Informatics and Automation). ), St. Petersburg: Federal Research Center of the Russian Academy of Sciences., 2022. vol. 21. no.5. pp. 1016–1043. 26. Yakimov V.N. Vosstanovleniye otschetov ravnomerno diskretizirovannogo signala na osnove avtoregressionnykh modeley pryamogo i obratnogo prognozirovaniya (Reconstruction of a uniformly sampled signal based on forward and backward autoregressive modeling) // Proceedings of XXIX International scientific and technical conference Radar, navigation, communications. Voronezh: Voronezh State University, Concern " Sozvezdiye", 2023. vol. 1. pp. 51-57. 27. State Standard RV 8.883-2015. Gosudarstvennaya sistema obespecheniya yedinstva izmereniy. Programmnoye obespecheniye sredstv izmereniy. Algoritmy obrabotki, khraneniya, zashchity i peredachi izmeritel'noy informatsii (State system for ensuring the uniformity of measurements. Software of measuring instruments. Algorithms of processing, storage, protection and transmission of measuring information. Test methods). Moscow: Standartinform Publ., 2018. 19 p. 28. State Standard RV 51904-2002. Programmnoye obespecheniye vstroyennykh sistem. Obshchiye trebovaniya k razrabotke i dokumentirovaniyu (Embedded system software. General requirements for development and documentation). Moscow: Gosstandart Rossii Publ., 2005. 63 p. 29. State Standard 8.654-2015. Gosudarstvennaya sistema obespecheniya yedinstva izmereniy. Trebovaniya k programmnomu obespecheniyu sredstv izmereniy. Osnovnyye polozheniya (State system for ensuring the uniformity of measurements. Requirements for software of measunng instruments. Main principles). Moscow: Standartinform Publ., 2015. 11 p. 30. State Standard RV 57700.22-2020. Komp'yuternyye modeli i modelirovaniye. Klassifikatsiya (Computer models and simulation. Classification). Moscow: Standartinform Publ., 2020. 7 p. 31. Yakimov V.N., Zaberzhinskij B.E., Mashkov A.V. Bukanova Yu.V. Multi-threaded approach to software high-speed algorithms for spectral analysis of multi-component signals // Proceedings of IEEE XXI International Conference on Complex Systems: Control and Modeling Problems (CSCMP). Samara, 2019. pp. 698-701. 32. Yakimov V.N., Mashkov A.V., Zhelonkin A.V. Spetsializirovannoye programmnoye obespecheniye izmeritel'noy sistemy dlya operativnogo otsenivaniya spektral'nogo sostava mnogokomponentnykh protsessov (Specialized Software of the Measuring System for the Operative Estimating the Spectral Composition of Multicomponent Processes) // Programmnye Produkty i Sistemy (Software & Systems). Tver: Research Institute “Centerprogramsystem”, 2019. no. 1. pp. 159-166. 33. Yakimov V.N., Gorbachev O.V. Programmnoye obespecheniye sistemy izmereniya amplitudnykh spektrov kolebatel'nykh protsessov (Software of Vibration Processes Amplitude Spectrum Measurement System) // Programmnyye produkty i sistemy (Software & Systems). Tver: Research Institute “Centerprogramsystem”, 2013. no. 2. pp. 165–170. 34. Yakimov V.N., Mashkov A.V., Zhelonkin A.V. Metrologicheski znachimoye programmnoye obespecheniye kontrol'no-izmeritel'noy si-stemy dlya kompleksnogo operativnogo spektral'nogo analiza na osnove tekhnologii rasparallelivaniya protsessornykh vychisleniy (Metrologically important software part for the control and measuring system for complex operational spectral analysis based on parallel processing) // Promyshlennyye ASU i kontrollery (Industrial automatic control systems and controllers). Moscow: Nauchtekhlitizdat Publishing House, 2019. no. 9. pp. 25-29.
Methodology for optimizing the topology of the differential correction field when constructing a network of reference integrity monitoring stations A methodology for calculating the reference stations range is presented. An approach that takes into account the dependences of the electric-field strength on frequency for various types of noises has been demonstrated. Using the approach it becomes possible to simplify the algorithm for calculating the reference stations range. It is noted that when implementing the presented algorithm, it is particularly difficult to determine an attenuation function. An example of the application of the developed algorithm in calculating the coverage areas of the reference integrity monitoring stations network in the Krasnoyarsk region in the Yenisei basin is given. As a result, the presented methodology for calculating the reference integrity monitoring stations range, taking into account noises of various natures, makes it possible to optimize the topology of the differential field when constructing a telecommunication system for distributing and monitoring corrective information. 2. Karetnikov V.V., Milyakov S.F., Shakhnov S.F. Primenenie global'nykh navigatsionnykh sputnikovykh sistem na vnutrennikh vodnykh putyakh Rossiiskoi Federatsii (Application of global navigation satellite systems on inland waterways of the Russian Federation). SPb.: Nauka, 2021. 287 p. 3. Postanovlenie Pravitel'stva RF ot 03.03.2012 ¹189 «O federal'noi tselevoi programme «Podderzhanie, razvitie i ispol'zovanie sistemy GLONASS na 2012-2020 gody» (Decree of the Government of the Russian Federation “About the federal target program “Maintenance, development and use of the GLONASS system for 2012-2020”). 4. Shakhnov S.F., Sikarev I.A., Kiselevich G.A. Osobennosti ucheta vliyaniya podstilayushchei poverkhnosti v radiokanalakh rechnoi lokal'noi differentsial'noi podsistemy GLONASS/GPS (Special features of the account of the influence of the underlying surface in the radio channels of river local differential subsystem GLONASS/GPS) // Problemy informatsionnoi bezopasnosti. Komp'yuternye sistemy (Information Security Problems. Computer Systems), 2015, no. 1, pp. 83–87. 5. Shakhnov S.F. Raschet funktsii oslableniya polya kontrol'no-korrektiruyushchikh stantsii s uchetom vliyaniya podstilayushchei poverkhnosti (Calculation of function field weakening of the control and correction stations taking into account the influence of the underlying surface) // Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2015, no. 1(29), pp. 116–123. DOI: 10.21821/2309-5180-2015-7-1-116-123 6. Sikarev A.A., Fal'ko A.I. Optimal'nyi priem diskretnykh soobshchenii (Optimal reception of discrete messages). M.: Svyaz', 1978. 328 p. 7. Shakhnov S.F. K raschetu pomekhozashchishchennosti radiokanalov rechnoi lokal'noi differentsial'noi podsistemy pri ispol'zovanii determinirovannykh signalov i vzaim-nykh pomekh (To calculation of the noise-protection of the radio channels of river LDSS with the use of the deterministic signals and mutual disturbances) // Vestnik gosudarstvennogo universiteta morskogo i rechnogo transporta imeni admirala S. O. Makarova, 2014, no. 6(28), pp. 24–30. 8. Karetnikov V.V., Shahnov S.F., Ageeva A.A. Construction Method of Telecommunication System for Corrective Information Distribution // IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018. Vol. 171. Is. 1. Pp. 012010. DOI: 10.1088/1755-1315/171/1/012010 9. Sikarev A.A., Shakhnov S.F. K raschetu napryazhennosti polya v radiokanalakh rechnoi lokal'noi differentsial'noi podsistemy GLONASS/GPS srednevolnovogo diapazona (To calculation of the field strength in the radiochannels of the local river differential subsystem GLONASS/GPS of medium wave range) // Vestnik gosudarstvennogo universiteta morskogo i rechnogo transporta imeni admirala S. O. Makarova. — 2014. — ¹ 3 (25). — S. 27–31. 10. Ivanova A.A., Shakhnov S.F., Butsanets A.A. Otsenka vliyaniya industrial'nykh pomekh pri postroenii sistemy kontrolya i upravleniya rechnoi lokal'noi differentsial'noi podsistemy GLONAS/GPS (Assessment of the man-made interference impact at the construction of control and management system of the river local differential subsystem GLONASS/GPS) // Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2019, vol. 11, no. 3, pp. 509–518. DOI: 10.21821/2309-5180-2019-11-3-509-518. 11. Rekomendatsiya MSE-R P.372-13 (09/2016). Radioshum. Seriya P: Rasprostranenie radiovoln (Radio noise. Series P: Radio Wave Propagation). Mezhdunarodnyi soyuz elektrosvyazi, 2016. 76 p. 12. Uait D.R.Zh. Elektromagnitnaya sovmestimost' radioelektronnykh sredstv i neprednamerennye pomekhi. Vyp. 1. Obshchie voprosy EMS. Mezhsistemnye pomekhi (Electromagnetic compatibility of radio-electronic equipment and unintentional interference. Vol. 1. General issues of electromagnetic compatibility. Intersystem interference.). M.: “Sov. radio”, 1977. 352 p. 13. Violette J.L.N., White D.R.J., Violette M.F. Electromagnetic compatibility handbook. Springer, 2014. 718 p.
Algorithms of interaction of cognitive maps in the procedure of permutational decoding of binary codes 2. Morelos-Zaragoza R. The Art of Noise-Tolerant Coding. Methods, Algorithms, and Applications. Translated from the English edition by Afanasiev V.B. Moscow: Technosphere, 2005. 320 p. 3. Peterson W., Weldon E. Error-Correcting Codes. Moscow: "Mir", 1976. 594 p. 4. Adzhemov A.S., Sannikov V.G. General Theory of Communication. Textbook for Universities. - Moscow: Hotline - Telecom, 2018. - 624 p. 5. Gladkih A.A., Ovinnikov A.A., Tamrazyan G.M. Mathematical Model of Cognitive Permutational Decoder / Digital Signal Processing. - 2019. - No. 1. - P.14-19. 6. Gladkih A.A., Ovinnikov A.A., Pchelin N.A., Brynza A.P. Permutational Decoding with a System of Adapted Alternative Solutions / Digital Signal Processing. - 2023. - No. 4. - P.73-78. 7. Ganin D.V., Damdam M.A.Ya., Savkin A.L. Permutational Decoding in Low-Power Wireless Sensor Networks // Automation of Control Processes. 2022. No. 1 (68). P. 54-61. doi:10.35752/1991-2927_2022_1_68_54. 8. Fried E. Elementary Introduction to Abstract Algebra. Translated from Hungarian by Yu.A. Danilov. Moscow: Mir, 1979, 260 p. 9. Brynza A.A., Gladkih A.A., Nichunaev A.A., Savkin A.L., Lyutvinskaya P.B. Structure and Interrelation of Cognitive Indicators in the System of Permutational Decoding // Automation of Control Processes. 2023. No. 4 (74). P. 126–133. doi:10.35752/1991-2927_2023_4_126. 10. Babanov N.Yu., Shakhtanov S.V. Cyclical Properties of Orbits of Permutations in the Cognitive Map of Real-Time Systems Permutational Decoder // Design and Technology of Electronic Devices. - 2020. - No.4(62). - P.85-92. 11. Estimation of Statistical Characteristics of the Permutational Decoder by the Method of its Software Implementation / A.L.H. Attabi, A.A. Brynza, D.V. Ganin, A.A. Nichunaev, A.V. Novoselov // Automation of Control Processes.
The results of experiments on recording and post-processing a mixture of a spread spectrum signal and intense CW interference converted by a radio frequency front-end 2. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov modulyatsiei nesushchei psevdosluchainoi posledovatel'nost'yu (Noise immunity of radio communication systems with the expansion of the spectrum of signals by modulation of the carrier pseudo-random sequence) / V.I. Borisov, V.M. Zinchuk, A.E. Limarev, N.P. Mukhin, G.S. Nakhmanson. M.: Radio i svyaz', 2003. 640 p. 3. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Design principles and functioning) / ed. by A.I. Perov, V.N. Kharisov. Ì.: Radiotekhnika. 2010. 800 p. 4. Borio D. GNSS acquisition in the presence of continuous wave interference // IEEE Transactions on aerospace and electronic systems. 2010. vol. 46. ¹1. pp. 47–60. 5. Avdeev V.A., Koshkarov A.S., Konnov E.V. Obnaruzhenie pomekh v chastotnykh diapazonakh kosmicheskikh navigatsionnykh system (Detection of interference in the frequency ranges of space navigation systems) // Zhurnal radiojelektroniki [jelektronnyj zhurnal] (Journal of Radio electronics). 2015. no 10. URL: http://jre.cplire.ru/jre/oct15/12/text.pdf. 6. Bek M.K., Shaheen E.M., Elgamel S.A. Analysis of the global position system acquisition process in the presence of interference // IET Radar, Sonar & Navigation. 2016. vol. 10. no 5. pp. 850–861. 7. Ye F., Tian H., Che F. CW interference effects on the performance of GPS receivers // Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 19–22 November 2017, Singapore. pp. 66–72. 8. Kulikov G.V., Nesterov A.V., Leljuh A.A. Pomehoustojchivost' priema signalov s kvadraturnoj amplitudnoj manipuljaciej v prisutstvii garmonicheskoj pomehi (Noise immunity of receiving signals with quadrature amplitude shift keying in the presence of harmonic interference) // Zhurnal radiojelektroniki [jelektronnyj zhurnal]. 2018. no 11. URL: http://jre.cplire.ru/jre/nov18/9/text.pdf. 9. Kuzmin E.V. Analiz chastotnyh harakteristik procedur korreljacionnoj obrabotki pri proizvol'nyh i fazomanipulirovannyh opornyh signalah (Analysis of the frequency responses of the correlation processing procedures for arbitrary and phase shift keying reference signals) // Tsifrovaya obrabotka signalov (Digital signal processing). 2022. no 4. pp. 34–44. 10. Kuzmin E.V., Zograf F.G. Vliyanie garmonicheskoi pomekhi na effektivnost' protsedury besporogovogo poiska shumopodobnogo signala po vremeni zapazdyvaniya s perekhodom v chastotnuyu oblast' opredeleniya (Influence of continuous wave interference on the efficiency of the non-threshold search procedure for a noise-like signal by delay time with transition to the frequency domain) // Radiotekhnika i elektronika (Radioengineering & Electronics). 2022. vol. 67. no 8. pp. 774–781. 11. Kuzmin E.V. Vlijanie mnogotonal'noj pomehi na poisk psevdosluchajnogo signala i povyshenie jeffektivnosti rezhekcii za schjot vzveshivanija sovremennymi modifikacijami funkcij Dol'fa-Chebysheva (Influence of multitone continuous wave interference on the pseudo-random signal searching and increasing the efficiency of the notch by weighting with Dolph-Chebyshev functions modern modifications) // Tsifrovaya obrabotka signalov (Digital signal processing). 2023. no 4. pp. 58–61. 12. Davidovici S., Kanterakis E.G. Narrow-Band Interference Rejection Using Real-Time Fourier Transforms // IEEE Transactions on Communications. 1989. vol. 37. no 7. pp. 713–722. 13. Cifrovaja chastotnaja selekcija signalov (Digital frequency selection of signals) / V.V. Vityazev. M.: Radio i svjaz', 1993. 240 p. 14. Bakit'ko R.V., Pol'shhikov V.P., Shilov A.I., Hackelevich Ja.D., Boldenkov E.N. Ispol'zovanie vesovyh funkcij dlja predvaritel'noj obrabotki shumopodobnyh signalov pri nalichii sil'nyh interferencionnyh pomeh (Using weighting functions for preprocessing spread spectrum signals in the presence of strong interference) // Radiotehnika. 2006. no 6. pp. 13–17. 15. Kuzmin E.V. Povyshenie effektivnosti obrabotki signalov na fone garmonicheskoi pomekhi za schet vybora funktsii predvaritel'nogo vzveshivaniya dlya chastotnogo rezhektora (Increasing the efficiency of the signals processing in case of continuous wave interference by choosing the function of the preliminary weighting for frequency notch) // Tsifrovaya obrabotka signalov (Digital signal processing). 2021. no 4. pp. 16–20. 16. Kuzmin E.V. Pokazateli kachestva algoritma DPF-rezhekcii uzkopolosnoj pomehi pri razlichnyh funkcijah predvaritel'nogo vzveshivanija (Quality indicators of the DFT-based algorithm for narrow-band interference rejection under various functions of the preliminary weighing) // Tsifrovaya obrabotka signalov (Digital signal processing). 2023. no 1. pp. 48–53. 17. Kuzmin E.V. Nejtralizacija intensivnoj garmonicheskoj pomehi za schjot spektral'no-vesovogo ocenivanija ejo parametrov (Neutralizing intensive continuous wave interference by spectral-weight estimation of its parameters) // Tsifrovaya obrabotka signalov (Digital signal processing). 2022. no 2. pp. 21–28. 18. Yarlykov M.S. Polnye CBOC-signaly i ih korreljacionnye funkcii (Complete composite binary offset carrier modulated signals and their correlation function) // Radiotekhnika i elektronika (Radioengineering & Electronics). 2015. V. 60. no 9. pp. 914–930. If you have any question please write: info@dspa.ru |