Digital Signal Processing |
Russian |
Digital adaptive antenna array for receiving useful signals under thermal noise Abstract 2. Teunissen P., Montenbruck O., Eds. Springer handbook of global navigation satellite systems. Sprigger, 2021. 1292 p. 3. Richards M. Fundamentals of radar signal processing. 3rd ed. McGraw Hill. 2022. 736 p. 4. Benenson L. S., Zhuravlev V. A., Popov S. V., Postnov G. A. Antennye reshetki. Metody rascheta i proektirovaniya (Antenna arrays. Computational and design methods). M.: Sovetskoe radio, 1966. 367 s. (In Russian). 5. Aktivnye fazirovannye antennye reshetki (Active phased arrays) / Pod red. D. I. Voskresenskogo i A. I. Kanashchenkova. M.: Radiotekhnika, 2004. 488 s. (In Russian) 6. Brown A. D., Boeringer D., Cooke T. Electronically scanned arrays. MATLAB® modelling and simulation. CRC Press, 2012. 214 p. 7. Balanis C. A. Antenna theory: analysis and design. 4-th ed. John Wiley & Sons, Inc., 2016. 1095 p. 8. Maillou R. J. Phased array antenna handbook, 3-rd ed. Artech House, Inc., 2017. 506 p. 9. Zhuravlev A. K., Lukoshkin A. P., Poddubnij S. S. Obrabotka signalov v adaptivnyh antennyh reshetkah (Signal processing in adaptive antenna arrays). L.: Izdatel'stvo Leningradskogo universiteta, 1983. 240 s. (In Russian). 10. Compton R. T. Adaptive antennas. Concepts and performance. Prentice Hall, 1988. 448 p. 11. Pistol'kors A. A., Litvinov O. S. Vvedenie v teoriyu adaptivnyh antenn (Introduction in adaptive arrays theory). M.: Nauka, 1991. 200 s. (In Russian). 12. Tsoulos G. V. Adaptive antennas for wireless communications. IEEE Press, 2001. 764 p. 13. Chandran S., Ed. Adaptive antenna arrays: trends and applications. Springer, 2004. 660 p. 14. Allen B., Ghavami M. Adaptive array systems. Fundamentals and applications. John Wiley & Sons Ltd., 2005. 250 p. 15. Fen A. J. Adaptive antennas and phased arrays in radar and communications. Artech House, Inc., 2007. 410 p. 16. Hudson J. E. Adaptive array principles. The Institution of Engineering and Technology, 2007. 253 p. 17. Monzingo R. A., Haupt R. L., Miller T. W. Introduction to adaptive arrays, 2nd ed. SciTech Publishing, 2011. 510 p. 18. Widrow B., Stearns D. D. Adaptive signal processing. Pearson. 1985. 528 p. 19. Cowan C. F. N., Grant P. M. Adaptive filters. Premtice-Hall, Inc., 1985. 308 p. 20. Sayed A. H. Fundamentals of adaptive filtering. John Willey and Sons, 2003. 1125 p. 21. Sayed A. H. Adaptive filters. John Wiley and Sons, 2008. 785 p. 22. Farhang-Boroujeny B. Adaptive filters theory and applications. 2-nd ed. John Wiley & Sons, 2013. 778 p. 23. Djigan V. I. Adaptivnaya fil'traciya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms). M: Tekhnosfera, 2013. 528 s. (In Russian). 24. Haykin S. Adaptive filter theory. 5-th ed. Pearson Education Inc., 2014. 889 p. 25. Diniz P. S. R. Adaptive filtering algorithms and practical implementation. 5-th ed. Springer, 2020. 495 p. 26. Frost O. L. An algorithm for linearly constrained adaptive array processing // Proceedings of the IEEE, 1972. Vol. 60. ¹ 8. Ñ. 926–935. 27. Varakin L. E. Sistemy svjazi s shumopodobnymi signalami. M.: Radio i svjaz'. 1985. 384 s. (in Russian). 28. Zepernick H.-J., Finger A. Pseudo random signal processing: theory and applications. Wiley. 2013. 672 p. 29. Djigan V. I. Adaptive antenna array for low signal-to-noise ratio operation // Proceedings of the Antenna Design and Measurement International Conference 2023 (ADMInC'23). St. Petersburg, Russia. October 19 – 21. 2023, 4 p. 30. Djigan V. I. Adaptive processing of matched filter output signals in antenna array // Proceedings of the 26-th International Conference on Digital Signal Processing and its Applications (DSPA-2024). Moscow, Russia. March 27 – 29, 2024. 5 p. 31. Steyskal H. Digital beamforming antennas // Microwave Journal. 1987. ¹ 1. P. 107–124. 32. Litva J., Lo T. K.-Y. Digital beamforming in wireless communications. Artech House., 1996. 301 p. 33. Grigor'ev L. N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannyh antennyh reshetkah (Digital beamforming in phased arrays). M.: Radiotekhnika, 2010. 144 p. (In Russian). 34. Dobychina E. M., Kol'cov Yu. V. Cifrovye antennye reshetki v bortovyh radiolokacionnyh sistemah. M.: Izd. MAI, 2013. 158 s. (In Russian). 35. Slyusar V. I. Razvitie skhemotekhniki CAR: nekotorye itogi. Chast' 1 (Solutions in antenna arrays with digital beamforming: some results. Part 1) // Pervaya milya. Last mile (First Mile.Last Mile). 2018. ¹ 1. C. 72-77. (In Russian). 36. Slyusar V. I. Razvitie skhemotekhniki CAR: nekotorye itogi. Chast' 2 (Solutions in antenna arrays with digital beamforming: some results. Part 2) // Pervaya milya. Last mile (First Mile. Last Mile). 2018. ¹ 2. C. 76-80. (In Russian). 37. Darabi H. Radiofrequency integrated circuits and systems, 2-nd ed. Cambridge University Press, 2020. 778 p. 38. Oppenheim A. V., Schafer R . W. Discrete-time signals processing. Prentice-Hall. 2009. 1144 p. 39. Dillinge M., Madani K. Alonistiot N. Software defined radio: architectures, systems and functions. Wiley, 2007. 454 p. 40. Kuo S. M., Gan W.-S. Digital signal processors: architectures, implementations and applications. Prentice Hal, 2004. 624 p. 41. Woods R., McAllister J., Lightbody G., Ying Yi. FPGA-based implementation of signal processing systems. 2-nd ed. Willey, 2017. 360 p. 42. Welch T. B., Wright H. G., Morrow M. G. Real-time digital signal processing from MATLAB to C with the TMS320C6x DSPs. 3-rd ed. CRC Press, 2017. 480 p. 43. Vityazev S. V. Cifrovye processory obrabotki signalov (Digital signal processors). M.: Goryachaya liniya-Telkom, 2017. 100 s. (In Russian). 44. Djigan V. I. Some tricks of calculations in MIL RLS algorithm // Proceedings of the 23-th International Conference on Digital Signal Processing and its Applications (DSPA-2021), Moscow, Russia. March 24 – 26, 2021. 4 p. 45. Pletneva I. D., Djigan V. I. Modelirovanie obrabotki signalov v cifrovyh antennyh reshetkah // Issledovaniya v oblasti cifrovyh sistem svyazi (Mezhvuzovskij sbornik). M.: Izd. MIET. 2007. S. 36–43. (In Russian).
Analysis of the movement of groups of objects based on phase energy spectrum of the video sequence Keywords: phase energy function, point object, motion identification, group motion. All the information contained in it is concentrated in the amplitudes of spatial harmonics and phase energy characteristics. They, in turn, represent a discrete vector field. To determine the motion and find its parameters, it is necessary to have at least two frames. The difference in the phase-energy characteristics of two image frames are called phase-energy functions. The article considers the features of the formation of phase-energy functions of a video sequence in the presence of a moving small-sized object. The regions of two-dimensional phases are highlighted, which make it possible to analyze these functions at any position and direction of movement of the object. A method for analyzing phase-energy functions for the case of motion of a group of point objects is proposed. 2. Mareev A.V., Orlov A.A., Ryzhkova M.N. Metody lokalizacii obektov v videopotoke // Radiotekhnicheskie i telekommunikacionnye sistemy. 2021. no. 3. pp. 48-60. 3. Bogoslovskij A.V., Zhigulina I.V., Suharev V.A. Vektornoe pole fazoenergeticheskogo spektra izobrazheniya i videoposledovatelnosti // Radiotekhnika. 2018. no. 11. pp. 11-16. 4. Bogoslovskij A.V., Suharev V.A., Zhigulina I.V., Pantyuhin M.A. Vektornye polya, porozhdaemye preobrazovaniem Furje videosignalom izobrazhenij // Radiotekhnika. 2021. no. 7. pp. 127-139. 5. Vasilev S.V., Zhigulina I.V., Derbush D.A. Fazoenergeticheskie funkcii videoposledovatelnosti s dvizhushchimsya obektov pryamougolnoj formy // Cifrovaya obrabotka signalov. 2022. no. 4. pp. 65-71. 6. Bogoslovskij A.V., Vasilev S.V., Zhigulina I.V. Dvumernye fazoenergeticheskie harakteristiki // Cifrovaya obrabotka signalov i ee primenenie (DSPA-2023): doklady XXV Mezhdunarod. nauch. konf. Moskva: RNTORES im. A.S. Popova. 2023. pp. 256-259. 7. Bogoslovskij A.V., Vasilev S.V., Zhigulina I.V. Primenenie fazoenergeticheskogo spektra dlya identifikacii dvizheniya // Radiotekhnika. 2023. no. 10. pp. 96-107.
Spike model of signals and its application to spectral analysis
Abstract References 2. Nejrokomp'yutery v sistemah obrabotki signalov / Pod red. YU. V. Gulyaeva i A. I. Galushkina. M.: Radiotekhnika, 2003. 224 s. (in Russian) 3. Roy K., Jaiswal A., Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature. 2019 Nov, 575(7784). pp. 607-617. 4. Bondarev V. Training a digital model of a deep spiking neural network using backpropagation. E3S Web Conf. Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020). 2020, vol. 224, no. 01026, 7 p. 5. Lin X., Zhang Z., Zheng D. Supervised learning algorithm based on spike train inner product for deep spiking neural networks. Brain Sci. 2023, vol. 13, no. 2:168, 20 p. 6. Li K., Principe J.C. Biologically-inspired spike-based automatic speech recognition of isolated digits over a reproducing kernel hilbert space. Front. Neurosci. 2018, vol.12, no. 194, 17 p. 7. Kaldy C., Lazar A.A., Simonyi E., Toth L. Time encoded communications for human area network biomonitoring. 2008, 8 p. http://bionet.github.io/papers/lazar2-07.pdf 8. Giraldo N.S., Isaza S., Velasquez R.A. Sailboat navigation control system based on spiking neural networks. Control Theory Technol. 2023, vol. 21, pp. 489–504. 9. Li K., Principe J.C. Biologically-inspired pulse signal processing for intelligence at the edge. Front. Artif. Intell. 2021, vol. 4, no. 568384, 16 p. 10. Maass W. Paradigms for computing with spiking neurons. Models of Neural Networks. Early Vision and Attention / J.L. van Hemmen, J.D. Cowan, E.Domany (eds.). Springer, 2002, vol. 4, pp. 373–402. 11. Gerstner W., Kistler W.M. Spiking neuron models: single neurons, populations, plasticity. UK: Cambridge University Press, 2002. 498 p.
Abstract References 2. Dinan E. H., Jabbari B. Spreading codes for direct sequence cdma and wideband cdma cellular networks // IEEE communications magazine: 1998, vol. 36, no. 9, pp. 48–54. 3. Winters J. Differential detection with intersymbol interference and frequency uncertainty // IEEE Transactions on Communications: 1984, vol. 32, no. 1, pp. 25–33. 4. Grigoriev E.K. Analysis of correlation characteristics of new code sequences based on persymmetric quasi-orthogonal circulants //Proceedings of educational institutions of communications. 2022. Vol. 8. no. 2. pp. 83-90. 5. Potekhin E.N., Shuvalov A.S., Leukhin A.N. Methods and results of synthesis of aperiodic binary sequences and Barker multiphase sequences //Digital Signal Processing no.4, 2013, pp. 45-54. 6. Peterev S. V., Makarenko S.I., Kovalsky A.A. Representative of the Starlink satellite communication system //Control, communication and security systems, no. 4, 2022, 220 p. 7. Stepan V. Application of Starlink satellite communications //Military user course, 267 p. e-mail volodymyr@stepanets.eu 8. Peng G., Li R., He Y., Han Z. Timing and Frequency Synchronization Using CAZAC Sequences for OFDM Systems //Sensors 2023, 23, 3168. [Electronic resource] – Access mode: https://doi.org/10.3390/s23063168; https://www.mdpi.com/journal/sensors (accessed: 15-03-2023). 9. 4.5. Incoherent detection. [Electronic resource] – Access mode: https://siblec.ru/telekommunikatsii/teoreticheskie-osnovy-tsifrovoj-svyazi/4-polosovaya-modulyatsiya-i-demodulyatsiya/4-5-nekogerentno (accessed: 21-01-2024). 10. 10. Gelgor A. L., Popov E.A. LTE mobile data transmission technology - S-Pb.: Polytechnic University Publishing House, 2011 11. ETSI TS 136 211 V10.0.0 (2011-01). Technical Specification. European Telecommunications Standards Institute, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (3GPP TS 36.211 version 10.0.0 Release 10), 2011, 104 p. 12. 3GPP TS 36.101 V11.5.0 (2013-07) Technical Specification Technical Specification. - European Telecommunications Standards Institute, Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 V11.5.0 (2013-07) Release 11), 2013, 446 p. 13. Chu D. Polyphase codes with good correlation properties. // IEEE Transactions of information Theory, vol.18, no.4, july 1972, pp.531-532. 14. Frank R.L Polyphase Codes with Good Nonperiodic Correlation Properties // IEEE TRANSACTIONS ON INFORMATION THEORY, 1963, pp.43-45. 15. Multiphase signals. Frank's signals. [Electronic resource] – Access mode: https://scask.ru/n_book_ssn.php?id=23&3.8.Multiphase signals. Frank's signals(scask.ru) (accessed: 23-05-2022) 16. Frank R.L., Zadoff S.A. Phase shift pulse codes with good periodic correlation properties, // IRE Trans. Inform. Theory (Corresp.), vol. IT-S, Oct., 1962, pp. 381-382.
Abstract The developed model ensures subpixel accuracy of the of illumination marker glow centers forming, takes into account the law of brightness distribution when projecting structured illumination beams onto an object at different angles; parameters of the optical system of the camera; change in the angular dimensions of the illumination markers observed by the optical system with a change in range; speckle noise characteristic of laser reflections from non-mirror surfaces. To study the degree of compliance of the developed model with real data, a semi-natural experiment was performed using a prototype of a laser triangulation rangefinder with multi-beam illumination, consisting of a recording webcam Defender C - 2525HD (video stream - 640x480@30Hz) and a laser spotlight of continuous radiation at a wavelength of lambda = 630 nm with a two dimensional diffraction grating. Analysis of the experimental results showed that when irradiating an object with a diffuse nature of reflections from its surface, taking into account in the mathematical model the distortion of the optical system of the recording camera and the influence of the range on the angular dimensions of the observed illumination markers for a low-resolution camera (0.3 Mp) with angular dimensions of the field of view of about 40ox30o makes it possible to reduce the root-mean-square error in the position of the centers of the images of the illumination markers to 40%, and the absolute error - up to 1.9 times compared to the known modeling method. References 2. Underlich T., Niemeier W., Wujanz D., Holst C., Neitzel F., Kuhlmann H. Areal defor-mation analysis from TLS point clouds – The challenge // Allg. Vermess. Nachr. 2016, vol. 123, pp. 340-351. 3. Baranchikov A.I., Muratov E.R., Nikiforov M.B., Ustyukov D.I. Obnaruzhenie tochek lazernogo podsveta na slozhom fone (Detecting stereo laser illumination points on complex backgrounds) // Izvestiya TulGU. Tehnicheskie nauki. 2018, vol. 9, pp. 10-19. 4. Image processing in aviation vision systems / edited by L.N. Kostyashkin and M.B. Nikiforov. Moscow: FIZMATLIT, 2016. 234 p. 5. Efimov A.I., Åôèìîâ À.È., Kostyashkin L.N., Loginov A.A., Muratov E.R. Nikiforov M.B., Novikov A.I. Obrabotka izobrazheniy v mnogospektralnyh sistemah tehnicheskogo zreniya (Image processing in multispectral vision systems) // Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2017, no. 60, pp. 83 92. 6. Alpatov B.A., Babayan B.A., Evteev I.E. Modelirovanie raboty sistemy tehnicheskogo zreniya so strukturirovannym osveshcheniem (Modeling the operation of a machine vision system with structured lighting)// Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2020, no. 71, pp. 128-136. 7. Gumenyuk A.A., Marinina I.A., Shtrunova E.S. Razrabotka modeli lazernogo triangulyacionnogo dal'nomera so strukturirovannoy podsvetkoy (Development of a model of a laser triangulation rangefinder with structured illumination) // Trudy MAI. 2023, no. 130, pp. 1 19. 8. Andreev V.G., Zhirkov E.A. Metody analiza svetovyh otrazheniy pri lazernom zondirovanii atmosfery (Methods of analysis of light reflections in laser sounding of the atmosphere) // Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2023, no. 85, pp. 14-22. 9. Goryacheva V.A. Opticheskiy kanal obzorno-poiskovoy informacionno-izmeritelnoy sistemy (Optical channel of the survey and search information and measuring system) // Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2023, no. 86, pp. 38-44. 10. Kosarev O.V., Dement'ev E.G., Katuncov E.V., Luntovskaya Ya.A., Katelevskiy D.A. Algoritm sovmeshcheniya dvumernyh izobrazheniy metodami konturnogo analiza (Algorithm for combining two-dimensional images using contour analysis methods) // Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2023, no. 86, pp. 38-44. 11. Bresenham J.E. Algorithm for computer control of a digital plotter // IBM Systems Journal. 1965, vol. 4, no. 1, pp. 25-30. 12. Hartley R., Zisserman A. Multiple view geometry in computer vision: 2nd edition. Cambridge: Cambridge university press, 2003. 656 ð. 13. Landsberg G.S. Optics. Moscow: FIZMATLIT, 2017. 852 p. 14. Andreev V.G., Yukin S.A. Formirovanie radiolokacionnogo izobrazheniya podstilayushchey poverhnosti po cifrovoy topograficheskoy karte (Formation of a radar image of the underlying surface using a digital topographic map) // Vestnik Ryazanskogo gosudarstvennogo radiotehnicheskogo universiteta. 2007, no. 21, pp. 25-30. 15. Rogers D., Adams J. Mathematical foundations of machine graphics. Moscow: Mir, 2001. 608 p. 16. Miroshnikov M.M. Theoretical foundations of optical-electronic devices: a textbook for universities. L.: Mechanical Engineering (Leningrad Department), 1977. 600 p. 17. Berry E.M. The reflection of light from a sphere // Journal of the Optical Society of America. 1929, vol. 7, pp. 679-682. 18. Glaeser G. Reflections on spheres and cylinders of revolution // Journal for Geometry and Graphics. 1999, vol. 3, no. 2, pp. 121-139. 19. Brown D.C. Close-range camera calibration // Photogrammetric Engineering. 1971, vol. 37, no. 8, pp. 855-866. 20. Zhang Z. A flexible new technique for camera calibration // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, vol. 22, no. 11, pp. 1330 1334. 21. Camera Calibration Tools. – URL: http://www0.cs.ucl.ac.uk/staff/Dan.Stoyanov/calib/download.html (äàòà îáðàùåíèÿ 08.02.2024). 22. Patent RU No. 2788666, IPC G06T 7/80 (2017.01). Method for mutual calibration of a video camera and a fan laser illumination apparatus / I.S. Kholopov; declared 22.11.2021; published 24.01.2023. Bulletin No. 3. 23. Pavlov V.A., Belov A.A., Volvenko S.V., Rashich A.V. Primenenie obuchennyh na opticheskih izobrazheniyah svyortochnyh neyronnyh setey dlya obnaruzheniya ob''ektov na radiolokacionnyh izobrazheniyah (Applying convolutional neural networks trained on optical images to detect objects in radar images) // Kompyuternaya optika. 2024. Ò. 48, no. 2, pp. 253-259. 24. Moskvitin A.Ye., Ushenkin V.A. Kompleksirovanie radiolokacionnyh izobrazheniy ot voshodyashchego i nishodyashchego vitkov orbity na osnove nechetkoy logiki (Fusion of radar images from ascending and descending orbits based on fuzzy logic) // Digital signal processing. 2018, no. 3, pp. 10-15. 25. Gascon F., Salazar F. Simulation of rough surfaces and analysis of roughness by MATLAB // MATLAB – An ubiquitous tool for the practical engineer: ed. M. Ionescu. Rijeka: InTech, 2011, pp. 391-420. 26. Amir Y.M., Thornberg B. High precision laser scanning of metallic surfaces // International Journal of Optics. Vol. 2017. Article ID 4134205, pp. 1-13.
Application of harmonic wavelet transform to OFDM signal processing in a non-stationary radio channel The paper consists of several sections and below you can find the brief contents of each one:
2. V.V. Egorov, A.E. Timofeev Ustanovlenie chastotno-vremennoi synchronizatsii v mnogochastotnih KV-sistemah peredachi dannih (Establishing time-frequency synchronization in multi-frequency short-wave data transmission systems) // Electrosvyaz, No. 7, 2013. – P. 41-44. 3. B.I. Shakhtarin, V.V. Sizih, Yu.A. Sidorkina, etc. Synchronizatsia v radiosvyazi I radionavigatsii (Synchronization in radio communication and radio navigation). M. : Goryachaya Linia – Telecom, 2011, 278 p. 4. S. Mallat Veiwleti v obrabotke signalov (Wavelets in signal processing). M., Mir, 2005. 671 p. 5. N.K. Smolentsev Veivlet analiz v Matlab (Wavelet analysis in MATLAB). 3rd edition. M. : DMK-Press, 2010, 448 p. 6. D. E. Newland "Harmonic wavelet analysis," Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), vol. 443, no. 1917, pp. 203–225 (8 Oct. 1993). 7. D. E. Newland Random vibrations, spectral and wavelet analysis, 3rd edn. Harlow: Longman, and New York: John Wiley, 1993. 8. N. I. Oreshko, V. V. Geppener, D. M. Klionskiy Primenenie harmonicheskih veivletov v zadachah obrabotki oscilliruyushikh signalov (Application of harmonic wavelets in the tasks related to oscillating signal processing) // Digital Signal Processing, No. 2, 2012, pp. 6-14. 9. D. M. Klionskiy, N. I. Oreshko Characteristiki realnih wavelet filtrov primenitelno k harmonicheskomu wavelet preobrazovaniju (Characteristics of real wavelet filters relative to the harmonic wavelet transform) // Digital Signal Processing and Its Applications, 2013, P. 302-306. 10. A.B. Serienko Tsifrovaya obrabotka signalov (Digital signal processing). 3rd edition, Saint Petersburg, BHV Petersburg, 2011, 768 p. 11. A.A. Zhiglyavskiy, A.E. Kraskovskiy Obnaruzhenie razladki sluchainih processov v zadachah radio techniki (Fault detection of random processes in radio engineering tasks), Leningrad, Publishing house of Leningrad State University, 1988, 224 p.
An algorithm for complex processing of information about the temperature profile in the airfield area Existing temperature meters at the airfield either do not have sufficient measurement accuracy and may miss emerging temperature profile anomalies or do not measure the temperature profile, but measure the air temperature at the earth's surface. Using an integrated approach to assessing the temperature profile in conjunction with the use of a promising radiosonding system based on unmanned systems, it is possible to achieve the required accuracy of measuring the temperature profile in the airfield area. The basis for solving the problem of developing an algorithm for complex processing of information about the temperature profile are the methods of the Markov theory of optimal aggregation. The article provides an assessment of the quality of the obtained algorithm for complex processing of information about the temperature profile. The results of modeling the algorithm for complex processing of temperature profile information showed that under normal operating conditions of the temperature profiler and the airfield radiosonde system, complex processing of temperature profile information in the airfield area allows reducing the negative effect of unreliable temperature profiler measurements and, thereby, increasing flight safety during takeoff and landing of aircraft. In the absence of temperature measurements from the airfield radiosonde system, the accuracy of temperature profile measurement will be determined only by the technical characteristics of the temperature profiler and the quality of its calibration. 2. Bolelov E.A., Vasiliev O.V., Zyabkin S.A., Chirov D.S. Development of a fuzzy-logical classifier of the phase state of hydrometeors for an algorithm for classifying zones of probable icing of aircraft in X-band weather radars // T-Comm: Telecommunications and transport. 2023. Vol. 17. No. 10. pp. 4-12. 3. Bogatkin O.G. Fundamentals of Aviation Meteorology. Textbook. - St. Petersburg: Publ. RSHU, 2009. 339 p. 4. Galaeva K.I., Bolelov E.A., Guberman I.B., Yeshchenko A.A., Daletsky S.V. Justification of the tasks solved by the meteorological radar complex // Scientific Bulletin of the State Scientific Research Institute of Civil Aviation (GosNII GA), No. 20 (331), 2018. pp. 74-81. 5. Korablyov Yu.N. Operational notifying aircraft crew about dangerous meteorological phenomena in the zones of arctic landing sites // Civil Aviation High Technologies, Vol. 21, No. 5, 2018. pp. 137-149. 6. Bolelov E.A. Problems of meteorological support for civil aviation flights at local air route aerodromes, temporary aerodromes and airfield sites. Collection of articles based on the materials of the 55th scientific readings in memory of K.E. Tsiolkovsky. Kaluga, 2020. pp. 83-87. 7. Bolelov E.A., Kudinov A.T., Bikteeva E.B., Guberman I.B. A device for integrated processing of information about spatial position of the unmanned aerodrome meteorological reconnaissance // Scientific Bulletin of the State Scientific Research Institute of Civil Aviation (GosNII GA), No. 26 (337), 2019. pp. 100-112. 8. Bolelov E.A. Increase success rate of weather forecasts for the airfield by integration of measurements of meteorological parameters of the atmosphere // Civil Aviation High Technologies. 2019, Vol. 22, No. 5. pp. 43-53. 9. Bolelov E.A., Korablyov Yu.N., Baranov N.A., Demin S.S., Yeshchenko A.A. Integrated processing of meteorological data in a mobile airfield complexes of meteorological and sounding of the atmosphere. // Scientific Bulletin of the State Scientific Research Institute of Civil Aviation (GosNII GA), No. 20 (331), 2018. pp.82-92. 10. Borisenko M.M. Vertical profiles of wind and temperature in the lower layers of the atmosphere // Proceedings of the Main Geophysical Observatory. 1974. Issue. 320. 205 p. 11. Reshetov V.D. Variability of meteorological elements in the atmosphere. L.: Gidrometeoizdat, 1973. 215 p. 12. Bolelov E.A., Vasiliev O.V., Galaeva K.I. Spatial variability of the air temperature profile in the aerodrome area. // Scientific Bulletin of the State Scientific Research Institute of Civil Aviation (GosNII GA), No. 29, 2019. pp. 146-154. 13. Bolelov E. A., Vasiliev O. V., Galaeva K. I., Ziabkin S. A. Analysis of the height difference of the zero isotherm according to two temperature profilers. // Civil Aviation High Technologies. 2020. 23(1). pp.19-27. 14. Azarov M. A. Processing of telemetry and range signals of an aerological probe. // Digital signal processing, No. 2, 2004. pp. 34-39. 15. Yarlykov M. S., Mironov M. A. Markov theory of estimation of random processes. - M.: Radio and communication, 1993. 464 p. 16. Fridzon M. B. Metrology of atmospheric radiosonde sounding (Methodology and reliability of atmospheric radiosonde sounding results). Publ. LAPLAMBERT Academic Publishing, Berlin, 2011. 288 p. 17. Federal Aviation Regulations "Provision of meteorological information to support aircraft flights" 03.03.2014 No. 60. 18. Bolelov E.A., Ermoshenko Yu.M., Fridzon M.B., Korablyov Yu.N. Dynamic errors of temperature sensors with the sounding of the atmosphere. // Civil Aviation High Technologies, Vol. 20, No. 5, 2017. pp.88-97. If you have any question please write: info@dspa.ru |